On the stability in phase-lag heat conduction with two temperatures

We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations. We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolution equations 2018-12, Vol.18 (4), p.1697-1712
Hauptverfasser: Magaña, Antonio, Miranville, Alain, Quintanilla, Ramón
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1712
container_issue 4
container_start_page 1697
container_title Journal of evolution equations
container_volume 18
creator Magaña, Antonio
Miranville, Alain
Quintanilla, Ramón
description We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations. We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the solutions for each approximation.
doi_str_mv 10.1007/s00028-018-0457-z
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_333908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2151824220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-dc677689554b3cc3f4588ab2fae76432be6cd28af4d833e2215f961ef3769933</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZj2Q3Ryl-QaGX3pfNZtKktEnc3VDaX29KFL14GGYG5nkZHkLuGTwyAPUUAIDrBNhYMlXJ6YLMmOQyERz45c_M8vya3ISwBWAq1emMLFYtjTXSEG3R7Jp4pE1L-9oGTHZ2Q2u0kbquLQcXm66lhybWNB46GnHfo7dx8BhuyVVldwHvvvucrF9f1ov3ZLl6-1g8LxMngcWkdJlSmc7TVBbCOVHJVGtb8MqiyqTgBWau5NpWstRCIOcsrfKMYSVUludCzAmbYl0YnPHo0DsbTWeb3-VcHBQ3Qogc9Mg8TEzvu88BQzTbbvDt-KUZ45nmknP4k-y7EDxWpvfN3vqjYWDOes2k14x6zVmvOY0Mn5gw3rYb9L_J_0Nfdg18wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151824220</pqid></control><display><type>article</type><title>On the stability in phase-lag heat conduction with two temperatures</title><source>SpringerNature Journals</source><source>Recercat</source><creator>Magaña, Antonio ; Miranville, Alain ; Quintanilla, Ramón</creator><creatorcontrib>Magaña, Antonio ; Miranville, Alain ; Quintanilla, Ramón</creatorcontrib><description>We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations. We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the solutions for each approximation.</description><identifier>ISSN: 1424-3199</identifier><identifier>EISSN: 1424-3202</identifier><identifier>DOI: 10.1007/s00028-018-0457-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>35 Partial differential equations ; 74 Mechanics of deformable solids ; 74F Coupling of solid mechanics with other effects ; Analysis ; Classificació AMS ; Conduction heating ; Conductive heat transfer ; Differential equations, Partial ; Energy methods ; Equacions diferencials parcials ; Instability ; Matemàtica aplicada a les ciències ; Matemàtiques i estadística ; Mathematics ; Mathematics and Statistics ; Phase lag ; Phase-lag heat conduction ; Spectral analysis ; Stability ; Termoelasticitat ; Thermoelasticity ; Well posed problems ; Well-posedness ; Àrees temàtiques de la UPC</subject><ispartof>Journal of evolution equations, 2018-12, Vol.18 (4), p.1697-1712</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-dc677689554b3cc3f4588ab2fae76432be6cd28af4d833e2215f961ef3769933</citedby><cites>FETCH-LOGICAL-c401t-dc677689554b3cc3f4588ab2fae76432be6cd28af4d833e2215f961ef3769933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00028-018-0457-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00028-018-0457-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,26979,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Magaña, Antonio</creatorcontrib><creatorcontrib>Miranville, Alain</creatorcontrib><creatorcontrib>Quintanilla, Ramón</creatorcontrib><title>On the stability in phase-lag heat conduction with two temperatures</title><title>Journal of evolution equations</title><addtitle>J. Evol. Equ</addtitle><description>We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations. We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the solutions for each approximation.</description><subject>35 Partial differential equations</subject><subject>74 Mechanics of deformable solids</subject><subject>74F Coupling of solid mechanics with other effects</subject><subject>Analysis</subject><subject>Classificació AMS</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Differential equations, Partial</subject><subject>Energy methods</subject><subject>Equacions diferencials parcials</subject><subject>Instability</subject><subject>Matemàtica aplicada a les ciències</subject><subject>Matemàtiques i estadística</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Phase lag</subject><subject>Phase-lag heat conduction</subject><subject>Spectral analysis</subject><subject>Stability</subject><subject>Termoelasticitat</subject><subject>Thermoelasticity</subject><subject>Well posed problems</subject><subject>Well-posedness</subject><subject>Àrees temàtiques de la UPC</subject><issn>1424-3199</issn><issn>1424-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZj2Q3Ryl-QaGX3pfNZtKktEnc3VDaX29KFL14GGYG5nkZHkLuGTwyAPUUAIDrBNhYMlXJ6YLMmOQyERz45c_M8vya3ISwBWAq1emMLFYtjTXSEG3R7Jp4pE1L-9oGTHZ2Q2u0kbquLQcXm66lhybWNB46GnHfo7dx8BhuyVVldwHvvvucrF9f1ov3ZLl6-1g8LxMngcWkdJlSmc7TVBbCOVHJVGtb8MqiyqTgBWau5NpWstRCIOcsrfKMYSVUludCzAmbYl0YnPHo0DsbTWeb3-VcHBQ3Qogc9Mg8TEzvu88BQzTbbvDt-KUZ45nmknP4k-y7EDxWpvfN3vqjYWDOes2k14x6zVmvOY0Mn5gw3rYb9L_J_0Nfdg18wg</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Magaña, Antonio</creator><creator>Miranville, Alain</creator><creator>Quintanilla, Ramón</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20181201</creationdate><title>On the stability in phase-lag heat conduction with two temperatures</title><author>Magaña, Antonio ; Miranville, Alain ; Quintanilla, Ramón</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-dc677689554b3cc3f4588ab2fae76432be6cd28af4d833e2215f961ef3769933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>35 Partial differential equations</topic><topic>74 Mechanics of deformable solids</topic><topic>74F Coupling of solid mechanics with other effects</topic><topic>Analysis</topic><topic>Classificació AMS</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Differential equations, Partial</topic><topic>Energy methods</topic><topic>Equacions diferencials parcials</topic><topic>Instability</topic><topic>Matemàtica aplicada a les ciències</topic><topic>Matemàtiques i estadística</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Phase lag</topic><topic>Phase-lag heat conduction</topic><topic>Spectral analysis</topic><topic>Stability</topic><topic>Termoelasticitat</topic><topic>Thermoelasticity</topic><topic>Well posed problems</topic><topic>Well-posedness</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magaña, Antonio</creatorcontrib><creatorcontrib>Miranville, Alain</creatorcontrib><creatorcontrib>Quintanilla, Ramón</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Journal of evolution equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magaña, Antonio</au><au>Miranville, Alain</au><au>Quintanilla, Ramón</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stability in phase-lag heat conduction with two temperatures</atitle><jtitle>Journal of evolution equations</jtitle><stitle>J. Evol. Equ</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>18</volume><issue>4</issue><spage>1697</spage><epage>1712</epage><pages>1697-1712</pages><issn>1424-3199</issn><eissn>1424-3202</eissn><abstract>We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations. We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the solutions for each approximation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00028-018-0457-z</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-3199
ispartof Journal of evolution equations, 2018-12, Vol.18 (4), p.1697-1712
issn 1424-3199
1424-3202
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_333908
source SpringerNature Journals; Recercat
subjects 35 Partial differential equations
74 Mechanics of deformable solids
74F Coupling of solid mechanics with other effects
Analysis
Classificació AMS
Conduction heating
Conductive heat transfer
Differential equations, Partial
Energy methods
Equacions diferencials parcials
Instability
Matemàtica aplicada a les ciències
Matemàtiques i estadística
Mathematics
Mathematics and Statistics
Phase lag
Phase-lag heat conduction
Spectral analysis
Stability
Termoelasticitat
Thermoelasticity
Well posed problems
Well-posedness
Àrees temàtiques de la UPC
title On the stability in phase-lag heat conduction with two temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stability%20in%20phase-lag%20heat%20conduction%20with%20two%20temperatures&rft.jtitle=Journal%20of%20evolution%20equations&rft.au=Maga%C3%B1a,%20Antonio&rft.date=2018-12-01&rft.volume=18&rft.issue=4&rft.spage=1697&rft.epage=1712&rft.pages=1697-1712&rft.issn=1424-3199&rft.eissn=1424-3202&rft_id=info:doi/10.1007/s00028-018-0457-z&rft_dat=%3Cproquest_csuc_%3E2151824220%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151824220&rft_id=info:pmid/&rfr_iscdi=true