On the stability in phase-lag heat conduction with two temperatures
We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations. We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the soluti...
Gespeichert in:
Veröffentlicht in: | Journal of evolution equations 2018-12, Vol.18 (4), p.1697-1712 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1712 |
---|---|
container_issue | 4 |
container_start_page | 1697 |
container_title | Journal of evolution equations |
container_volume | 18 |
creator | Magaña, Antonio Miranville, Alain Quintanilla, Ramón |
description | We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations. We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the solutions for each approximation. |
doi_str_mv | 10.1007/s00028-018-0457-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_333908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2151824220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-dc677689554b3cc3f4588ab2fae76432be6cd28af4d833e2215f961ef3769933</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZj2Q3Ryl-QaGX3pfNZtKktEnc3VDaX29KFL14GGYG5nkZHkLuGTwyAPUUAIDrBNhYMlXJ6YLMmOQyERz45c_M8vya3ISwBWAq1emMLFYtjTXSEG3R7Jp4pE1L-9oGTHZ2Q2u0kbquLQcXm66lhybWNB46GnHfo7dx8BhuyVVldwHvvvucrF9f1ov3ZLl6-1g8LxMngcWkdJlSmc7TVBbCOVHJVGtb8MqiyqTgBWau5NpWstRCIOcsrfKMYSVUludCzAmbYl0YnPHo0DsbTWeb3-VcHBQ3Qogc9Mg8TEzvu88BQzTbbvDt-KUZ45nmknP4k-y7EDxWpvfN3vqjYWDOes2k14x6zVmvOY0Mn5gw3rYb9L_J_0Nfdg18wg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151824220</pqid></control><display><type>article</type><title>On the stability in phase-lag heat conduction with two temperatures</title><source>SpringerNature Journals</source><source>Recercat</source><creator>Magaña, Antonio ; Miranville, Alain ; Quintanilla, Ramón</creator><creatorcontrib>Magaña, Antonio ; Miranville, Alain ; Quintanilla, Ramón</creatorcontrib><description>We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations. We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the solutions for each approximation.</description><identifier>ISSN: 1424-3199</identifier><identifier>EISSN: 1424-3202</identifier><identifier>DOI: 10.1007/s00028-018-0457-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>35 Partial differential equations ; 74 Mechanics of deformable solids ; 74F Coupling of solid mechanics with other effects ; Analysis ; Classificació AMS ; Conduction heating ; Conductive heat transfer ; Differential equations, Partial ; Energy methods ; Equacions diferencials parcials ; Instability ; Matemàtica aplicada a les ciències ; Matemàtiques i estadística ; Mathematics ; Mathematics and Statistics ; Phase lag ; Phase-lag heat conduction ; Spectral analysis ; Stability ; Termoelasticitat ; Thermoelasticity ; Well posed problems ; Well-posedness ; Àrees temàtiques de la UPC</subject><ispartof>Journal of evolution equations, 2018-12, Vol.18 (4), p.1697-1712</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-dc677689554b3cc3f4588ab2fae76432be6cd28af4d833e2215f961ef3769933</citedby><cites>FETCH-LOGICAL-c401t-dc677689554b3cc3f4588ab2fae76432be6cd28af4d833e2215f961ef3769933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00028-018-0457-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00028-018-0457-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,26979,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Magaña, Antonio</creatorcontrib><creatorcontrib>Miranville, Alain</creatorcontrib><creatorcontrib>Quintanilla, Ramón</creatorcontrib><title>On the stability in phase-lag heat conduction with two temperatures</title><title>Journal of evolution equations</title><addtitle>J. Evol. Equ</addtitle><description>We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations. We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the solutions for each approximation.</description><subject>35 Partial differential equations</subject><subject>74 Mechanics of deformable solids</subject><subject>74F Coupling of solid mechanics with other effects</subject><subject>Analysis</subject><subject>Classificació AMS</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Differential equations, Partial</subject><subject>Energy methods</subject><subject>Equacions diferencials parcials</subject><subject>Instability</subject><subject>Matemàtica aplicada a les ciències</subject><subject>Matemàtiques i estadística</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Phase lag</subject><subject>Phase-lag heat conduction</subject><subject>Spectral analysis</subject><subject>Stability</subject><subject>Termoelasticitat</subject><subject>Thermoelasticity</subject><subject>Well posed problems</subject><subject>Well-posedness</subject><subject>Àrees temàtiques de la UPC</subject><issn>1424-3199</issn><issn>1424-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZj2Q3Ryl-QaGX3pfNZtKktEnc3VDaX29KFL14GGYG5nkZHkLuGTwyAPUUAIDrBNhYMlXJ6YLMmOQyERz45c_M8vya3ISwBWAq1emMLFYtjTXSEG3R7Jp4pE1L-9oGTHZ2Q2u0kbquLQcXm66lhybWNB46GnHfo7dx8BhuyVVldwHvvvucrF9f1ov3ZLl6-1g8LxMngcWkdJlSmc7TVBbCOVHJVGtb8MqiyqTgBWau5NpWstRCIOcsrfKMYSVUludCzAmbYl0YnPHo0DsbTWeb3-VcHBQ3Qogc9Mg8TEzvu88BQzTbbvDt-KUZ45nmknP4k-y7EDxWpvfN3vqjYWDOes2k14x6zVmvOY0Mn5gw3rYb9L_J_0Nfdg18wg</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Magaña, Antonio</creator><creator>Miranville, Alain</creator><creator>Quintanilla, Ramón</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20181201</creationdate><title>On the stability in phase-lag heat conduction with two temperatures</title><author>Magaña, Antonio ; Miranville, Alain ; Quintanilla, Ramón</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-dc677689554b3cc3f4588ab2fae76432be6cd28af4d833e2215f961ef3769933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>35 Partial differential equations</topic><topic>74 Mechanics of deformable solids</topic><topic>74F Coupling of solid mechanics with other effects</topic><topic>Analysis</topic><topic>Classificació AMS</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Differential equations, Partial</topic><topic>Energy methods</topic><topic>Equacions diferencials parcials</topic><topic>Instability</topic><topic>Matemàtica aplicada a les ciències</topic><topic>Matemàtiques i estadística</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Phase lag</topic><topic>Phase-lag heat conduction</topic><topic>Spectral analysis</topic><topic>Stability</topic><topic>Termoelasticitat</topic><topic>Thermoelasticity</topic><topic>Well posed problems</topic><topic>Well-posedness</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magaña, Antonio</creatorcontrib><creatorcontrib>Miranville, Alain</creatorcontrib><creatorcontrib>Quintanilla, Ramón</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Journal of evolution equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magaña, Antonio</au><au>Miranville, Alain</au><au>Quintanilla, Ramón</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stability in phase-lag heat conduction with two temperatures</atitle><jtitle>Journal of evolution equations</jtitle><stitle>J. Evol. Equ</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>18</volume><issue>4</issue><spage>1697</spage><epage>1712</epage><pages>1697-1712</pages><issn>1424-3199</issn><eissn>1424-3202</eissn><abstract>We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations. We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the solutions for each approximation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00028-018-0457-z</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-3199 |
ispartof | Journal of evolution equations, 2018-12, Vol.18 (4), p.1697-1712 |
issn | 1424-3199 1424-3202 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_333908 |
source | SpringerNature Journals; Recercat |
subjects | 35 Partial differential equations 74 Mechanics of deformable solids 74F Coupling of solid mechanics with other effects Analysis Classificació AMS Conduction heating Conductive heat transfer Differential equations, Partial Energy methods Equacions diferencials parcials Instability Matemàtica aplicada a les ciències Matemàtiques i estadística Mathematics Mathematics and Statistics Phase lag Phase-lag heat conduction Spectral analysis Stability Termoelasticitat Thermoelasticity Well posed problems Well-posedness Àrees temàtiques de la UPC |
title | On the stability in phase-lag heat conduction with two temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stability%20in%20phase-lag%20heat%20conduction%20with%20two%20temperatures&rft.jtitle=Journal%20of%20evolution%20equations&rft.au=Maga%C3%B1a,%20Antonio&rft.date=2018-12-01&rft.volume=18&rft.issue=4&rft.spage=1697&rft.epage=1712&rft.pages=1697-1712&rft.issn=1424-3199&rft.eissn=1424-3202&rft_id=info:doi/10.1007/s00028-018-0457-z&rft_dat=%3Cproquest_csuc_%3E2151824220%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151824220&rft_id=info:pmid/&rfr_iscdi=true |