Exploring brand-name drug mentions on Twitter for pharmacovigilance
Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand...
Gespeichert in:
Veröffentlicht in: | Studies in health technology and informatics 2015, Vol.210, p.55 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 55 |
container_title | Studies in health technology and informatics |
container_volume | 210 |
creator | Carbonell, Pablo Mayer, Miguel A Bravo, Àlex |
description | Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand names in order to explore the potential usefulness of the automated detection of drug side effects and drug-drug interactions on social media platforms such as Twitter. This information can be used for the development of predictive models for drug toxicity, drug-drug interactions or drug resistance. Taking into account the large number of drug brand mentions that we found on Twitter, it is promising as a tool for the detection, understanding and monitoring the way people manage prescribed drugs. |
doi_str_mv | 10.3233/978-1-61499-512-8-55 |
format | Article |
fullrecord | <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_315674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_315674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-61993951eaff6812afb68659838da3d7f590777c07dfaac230f80b0c9e2418e03</originalsourceid><addsrcrecordid>eNpFkMlOwzAYhH0A0VJ4A4T8AgYv8fIfUVUWqRKXco7-OHYxapzISVnenqKCOIxGc_hGoyHkSvAbJZW6BeuYYEZUAEwLyRzT-oTMOUjDwCg-I-fj-Ma5rAzYMzKTGkAILuZkufocdn1JeUubgrllGbtA27Lf0i7kKfV5pH2mm480TaHQ2Bc6vGLp0PfvaZt2mH24IKcRd2O4_PUFeblfbZaPbP388LS8WzMvtZoO8wAUaBEwRuOExNgYZzQ45VpUrY0auLXWc9tGRC8Vj4433EOQlXCBqwURx14_7n1dgg_F41T3mP7DjyS3slZCG1sdmOsjM-ybLrT1UFKH5av-e0B9A374XBE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exploring brand-name drug mentions on Twitter for pharmacovigilance</title><source>Recercat</source><creator>Carbonell, Pablo ; Mayer, Miguel A ; Bravo, Àlex</creator><creatorcontrib>Carbonell, Pablo ; Mayer, Miguel A ; Bravo, Àlex</creatorcontrib><description>Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand names in order to explore the potential usefulness of the automated detection of drug side effects and drug-drug interactions on social media platforms such as Twitter. This information can be used for the development of predictive models for drug toxicity, drug-drug interactions or drug resistance. Taking into account the large number of drug brand mentions that we found on Twitter, it is promising as a tool for the detection, understanding and monitoring the way people manage prescribed drugs.</description><identifier>ISSN: 0926-9630</identifier><identifier>DOI: 10.3233/978-1-61499-512-8-55</identifier><identifier>PMID: 25991101</identifier><language>eng</language><publisher>Netherlands: IOS Press</publisher><subject>Adverse Drug Reaction Reporting Systems - organization & administration ; Aspectes socials ; Data Mining - methods ; Drogues ; Natural Language Processing ; Pattern Recognition, Automated - methods ; Pharmacovigilance ; Population Surveillance ; Prescription Drugs - classification ; Social Media - utilization ; Terminology as Topic ; Twitter ; Vocabulary, Controlled</subject><ispartof>Studies in health technology and informatics, 2015, Vol.210, p.55</ispartof><rights>2015 European Federation for Medical Informatics (EFMI). This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License. doi:10.3233/978-1-61499-512-8-55 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26951</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/315674$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25991101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carbonell, Pablo</creatorcontrib><creatorcontrib>Mayer, Miguel A</creatorcontrib><creatorcontrib>Bravo, Àlex</creatorcontrib><title>Exploring brand-name drug mentions on Twitter for pharmacovigilance</title><title>Studies in health technology and informatics</title><addtitle>Stud Health Technol Inform</addtitle><description>Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand names in order to explore the potential usefulness of the automated detection of drug side effects and drug-drug interactions on social media platforms such as Twitter. This information can be used for the development of predictive models for drug toxicity, drug-drug interactions or drug resistance. Taking into account the large number of drug brand mentions that we found on Twitter, it is promising as a tool for the detection, understanding and monitoring the way people manage prescribed drugs.</description><subject>Adverse Drug Reaction Reporting Systems - organization & administration</subject><subject>Aspectes socials</subject><subject>Data Mining - methods</subject><subject>Drogues</subject><subject>Natural Language Processing</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pharmacovigilance</subject><subject>Population Surveillance</subject><subject>Prescription Drugs - classification</subject><subject>Social Media - utilization</subject><subject>Terminology as Topic</subject><subject>Twitter</subject><subject>Vocabulary, Controlled</subject><issn>0926-9630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNpFkMlOwzAYhH0A0VJ4A4T8AgYv8fIfUVUWqRKXco7-OHYxapzISVnenqKCOIxGc_hGoyHkSvAbJZW6BeuYYEZUAEwLyRzT-oTMOUjDwCg-I-fj-Ma5rAzYMzKTGkAILuZkufocdn1JeUubgrllGbtA27Lf0i7kKfV5pH2mm480TaHQ2Bc6vGLp0PfvaZt2mH24IKcRd2O4_PUFeblfbZaPbP388LS8WzMvtZoO8wAUaBEwRuOExNgYZzQ45VpUrY0auLXWc9tGRC8Vj4433EOQlXCBqwURx14_7n1dgg_F41T3mP7DjyS3slZCG1sdmOsjM-ybLrT1UFKH5av-e0B9A374XBE</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Carbonell, Pablo</creator><creator>Mayer, Miguel A</creator><creator>Bravo, Àlex</creator><general>IOS Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>XX2</scope></search><sort><creationdate>2015</creationdate><title>Exploring brand-name drug mentions on Twitter for pharmacovigilance</title><author>Carbonell, Pablo ; Mayer, Miguel A ; Bravo, Àlex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-61993951eaff6812afb68659838da3d7f590777c07dfaac230f80b0c9e2418e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adverse Drug Reaction Reporting Systems - organization & administration</topic><topic>Aspectes socials</topic><topic>Data Mining - methods</topic><topic>Drogues</topic><topic>Natural Language Processing</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pharmacovigilance</topic><topic>Population Surveillance</topic><topic>Prescription Drugs - classification</topic><topic>Social Media - utilization</topic><topic>Terminology as Topic</topic><topic>Twitter</topic><topic>Vocabulary, Controlled</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carbonell, Pablo</creatorcontrib><creatorcontrib>Mayer, Miguel A</creatorcontrib><creatorcontrib>Bravo, Àlex</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Recercat</collection><jtitle>Studies in health technology and informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carbonell, Pablo</au><au>Mayer, Miguel A</au><au>Bravo, Àlex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring brand-name drug mentions on Twitter for pharmacovigilance</atitle><jtitle>Studies in health technology and informatics</jtitle><addtitle>Stud Health Technol Inform</addtitle><date>2015</date><risdate>2015</risdate><volume>210</volume><spage>55</spage><pages>55-</pages><issn>0926-9630</issn><abstract>Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand names in order to explore the potential usefulness of the automated detection of drug side effects and drug-drug interactions on social media platforms such as Twitter. This information can be used for the development of predictive models for drug toxicity, drug-drug interactions or drug resistance. Taking into account the large number of drug brand mentions that we found on Twitter, it is promising as a tool for the detection, understanding and monitoring the way people manage prescribed drugs.</abstract><cop>Netherlands</cop><pub>IOS Press</pub><pmid>25991101</pmid><doi>10.3233/978-1-61499-512-8-55</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0926-9630 |
ispartof | Studies in health technology and informatics, 2015, Vol.210, p.55 |
issn | 0926-9630 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_315674 |
source | Recercat |
subjects | Adverse Drug Reaction Reporting Systems - organization & administration Aspectes socials Data Mining - methods Drogues Natural Language Processing Pattern Recognition, Automated - methods Pharmacovigilance Population Surveillance Prescription Drugs - classification Social Media - utilization Terminology as Topic Vocabulary, Controlled |
title | Exploring brand-name drug mentions on Twitter for pharmacovigilance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20brand-name%20drug%20mentions%20on%20Twitter%20for%20pharmacovigilance&rft.jtitle=Studies%20in%20health%20technology%20and%20informatics&rft.au=Carbonell,%20Pablo&rft.date=2015&rft.volume=210&rft.spage=55&rft.pages=55-&rft.issn=0926-9630&rft_id=info:doi/10.3233/978-1-61499-512-8-55&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_315674%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25991101&rfr_iscdi=true |