Exploring brand-name drug mentions on Twitter for pharmacovigilance

Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in health technology and informatics 2015, Vol.210, p.55
Hauptverfasser: Carbonell, Pablo, Mayer, Miguel A, Bravo, Àlex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 55
container_title Studies in health technology and informatics
container_volume 210
creator Carbonell, Pablo
Mayer, Miguel A
Bravo, Àlex
description Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand names in order to explore the potential usefulness of the automated detection of drug side effects and drug-drug interactions on social media platforms such as Twitter. This information can be used for the development of predictive models for drug toxicity, drug-drug interactions or drug resistance. Taking into account the large number of drug brand mentions that we found on Twitter, it is promising as a tool for the detection, understanding and monitoring the way people manage prescribed drugs.
doi_str_mv 10.3233/978-1-61499-512-8-55
format Article
fullrecord <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_315674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_315674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-61993951eaff6812afb68659838da3d7f590777c07dfaac230f80b0c9e2418e03</originalsourceid><addsrcrecordid>eNpFkMlOwzAYhH0A0VJ4A4T8AgYv8fIfUVUWqRKXco7-OHYxapzISVnenqKCOIxGc_hGoyHkSvAbJZW6BeuYYEZUAEwLyRzT-oTMOUjDwCg-I-fj-Ma5rAzYMzKTGkAILuZkufocdn1JeUubgrllGbtA27Lf0i7kKfV5pH2mm480TaHQ2Bc6vGLp0PfvaZt2mH24IKcRd2O4_PUFeblfbZaPbP388LS8WzMvtZoO8wAUaBEwRuOExNgYZzQ45VpUrY0auLXWc9tGRC8Vj4433EOQlXCBqwURx14_7n1dgg_F41T3mP7DjyS3slZCG1sdmOsjM-ybLrT1UFKH5av-e0B9A374XBE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exploring brand-name drug mentions on Twitter for pharmacovigilance</title><source>Recercat</source><creator>Carbonell, Pablo ; Mayer, Miguel A ; Bravo, Àlex</creator><creatorcontrib>Carbonell, Pablo ; Mayer, Miguel A ; Bravo, Àlex</creatorcontrib><description>Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand names in order to explore the potential usefulness of the automated detection of drug side effects and drug-drug interactions on social media platforms such as Twitter. This information can be used for the development of predictive models for drug toxicity, drug-drug interactions or drug resistance. Taking into account the large number of drug brand mentions that we found on Twitter, it is promising as a tool for the detection, understanding and monitoring the way people manage prescribed drugs.</description><identifier>ISSN: 0926-9630</identifier><identifier>DOI: 10.3233/978-1-61499-512-8-55</identifier><identifier>PMID: 25991101</identifier><language>eng</language><publisher>Netherlands: IOS Press</publisher><subject>Adverse Drug Reaction Reporting Systems - organization &amp; administration ; Aspectes socials ; Data Mining - methods ; Drogues ; Natural Language Processing ; Pattern Recognition, Automated - methods ; Pharmacovigilance ; Population Surveillance ; Prescription Drugs - classification ; Social Media - utilization ; Terminology as Topic ; Twitter ; Vocabulary, Controlled</subject><ispartof>Studies in health technology and informatics, 2015, Vol.210, p.55</ispartof><rights>2015 European Federation for Medical Informatics (EFMI). This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License. doi:10.3233/978-1-61499-512-8-55 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26951</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/315674$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25991101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carbonell, Pablo</creatorcontrib><creatorcontrib>Mayer, Miguel A</creatorcontrib><creatorcontrib>Bravo, Àlex</creatorcontrib><title>Exploring brand-name drug mentions on Twitter for pharmacovigilance</title><title>Studies in health technology and informatics</title><addtitle>Stud Health Technol Inform</addtitle><description>Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand names in order to explore the potential usefulness of the automated detection of drug side effects and drug-drug interactions on social media platforms such as Twitter. This information can be used for the development of predictive models for drug toxicity, drug-drug interactions or drug resistance. Taking into account the large number of drug brand mentions that we found on Twitter, it is promising as a tool for the detection, understanding and monitoring the way people manage prescribed drugs.</description><subject>Adverse Drug Reaction Reporting Systems - organization &amp; administration</subject><subject>Aspectes socials</subject><subject>Data Mining - methods</subject><subject>Drogues</subject><subject>Natural Language Processing</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pharmacovigilance</subject><subject>Population Surveillance</subject><subject>Prescription Drugs - classification</subject><subject>Social Media - utilization</subject><subject>Terminology as Topic</subject><subject>Twitter</subject><subject>Vocabulary, Controlled</subject><issn>0926-9630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNpFkMlOwzAYhH0A0VJ4A4T8AgYv8fIfUVUWqRKXco7-OHYxapzISVnenqKCOIxGc_hGoyHkSvAbJZW6BeuYYEZUAEwLyRzT-oTMOUjDwCg-I-fj-Ma5rAzYMzKTGkAILuZkufocdn1JeUubgrllGbtA27Lf0i7kKfV5pH2mm480TaHQ2Bc6vGLp0PfvaZt2mH24IKcRd2O4_PUFeblfbZaPbP388LS8WzMvtZoO8wAUaBEwRuOExNgYZzQ45VpUrY0auLXWc9tGRC8Vj4433EOQlXCBqwURx14_7n1dgg_F41T3mP7DjyS3slZCG1sdmOsjM-ybLrT1UFKH5av-e0B9A374XBE</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Carbonell, Pablo</creator><creator>Mayer, Miguel A</creator><creator>Bravo, Àlex</creator><general>IOS Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>XX2</scope></search><sort><creationdate>2015</creationdate><title>Exploring brand-name drug mentions on Twitter for pharmacovigilance</title><author>Carbonell, Pablo ; Mayer, Miguel A ; Bravo, Àlex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-61993951eaff6812afb68659838da3d7f590777c07dfaac230f80b0c9e2418e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adverse Drug Reaction Reporting Systems - organization &amp; administration</topic><topic>Aspectes socials</topic><topic>Data Mining - methods</topic><topic>Drogues</topic><topic>Natural Language Processing</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pharmacovigilance</topic><topic>Population Surveillance</topic><topic>Prescription Drugs - classification</topic><topic>Social Media - utilization</topic><topic>Terminology as Topic</topic><topic>Twitter</topic><topic>Vocabulary, Controlled</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carbonell, Pablo</creatorcontrib><creatorcontrib>Mayer, Miguel A</creatorcontrib><creatorcontrib>Bravo, Àlex</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Recercat</collection><jtitle>Studies in health technology and informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Carbonell, Pablo</au><au>Mayer, Miguel A</au><au>Bravo, Àlex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring brand-name drug mentions on Twitter for pharmacovigilance</atitle><jtitle>Studies in health technology and informatics</jtitle><addtitle>Stud Health Technol Inform</addtitle><date>2015</date><risdate>2015</risdate><volume>210</volume><spage>55</spage><pages>55-</pages><issn>0926-9630</issn><abstract>Twitter has been proposed by several studies as a means to track public health trends such as influenza and Ebola outbreaks by analyzing user messages in order to measure different population features and interests. In this work we analyze the number and features of mentions on Twitter of drug brand names in order to explore the potential usefulness of the automated detection of drug side effects and drug-drug interactions on social media platforms such as Twitter. This information can be used for the development of predictive models for drug toxicity, drug-drug interactions or drug resistance. Taking into account the large number of drug brand mentions that we found on Twitter, it is promising as a tool for the detection, understanding and monitoring the way people manage prescribed drugs.</abstract><cop>Netherlands</cop><pub>IOS Press</pub><pmid>25991101</pmid><doi>10.3233/978-1-61499-512-8-55</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0926-9630
ispartof Studies in health technology and informatics, 2015, Vol.210, p.55
issn 0926-9630
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_315674
source Recercat
subjects Adverse Drug Reaction Reporting Systems - organization & administration
Aspectes socials
Data Mining - methods
Drogues
Natural Language Processing
Pattern Recognition, Automated - methods
Pharmacovigilance
Population Surveillance
Prescription Drugs - classification
Social Media - utilization
Terminology as Topic
Twitter
Vocabulary, Controlled
title Exploring brand-name drug mentions on Twitter for pharmacovigilance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20brand-name%20drug%20mentions%20on%20Twitter%20for%20pharmacovigilance&rft.jtitle=Studies%20in%20health%20technology%20and%20informatics&rft.au=Carbonell,%20Pablo&rft.date=2015&rft.volume=210&rft.spage=55&rft.pages=55-&rft.issn=0926-9630&rft_id=info:doi/10.3233/978-1-61499-512-8-55&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_315674%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25991101&rfr_iscdi=true