Active and passive MDMA (‘ecstasy’) intake induces differential transcriptional changes in the mouse brain

3,4‐Methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is a recreational drug widely used by adolescents and young adults. Although its rewarding effects are well established, there is controversy on its addictive potential. We aimed to compare the consequences of active and passive MDMA administration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes, brain and behavior brain and behavior, 2012-02, Vol.11 (1), p.38-51
Hauptverfasser: Fernàndez‐Castillo, N., Orejarena, M. J., Ribasés, M., Blanco, E., Casas, M., Robledo, P., Maldonado, R., Cormand, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 38
container_title Genes, brain and behavior
container_volume 11
creator Fernàndez‐Castillo, N.
Orejarena, M. J.
Ribasés, M.
Blanco, E.
Casas, M.
Robledo, P.
Maldonado, R.
Cormand, B.
description 3,4‐Methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is a recreational drug widely used by adolescents and young adults. Although its rewarding effects are well established, there is controversy on its addictive potential. We aimed to compare the consequences of active and passive MDMA administration on gene expression in the mouse brain since all previous studies were based on passive MDMA administration. We used a yoked‐control operant intravenous self‐administration paradigm combined with microarray technology. Transcriptomic profiles of ventral striatum, frontal cortex, dorsal raphe nucleus and hippocampus were analysed in mice divided in contingent MDMA, yoked MDMA and yoked saline groups, and several changes were validated by quantitative reverse transcription polymerase chain reaction (qRT‐PCR). The comparison of contingent MDMA and yoked MDMA vs. yoked saline mice allowed the identification of differential expression in several genes, most of them with immunological and inflammatory functions, but others being involved in neuroadaptation. In the comparison of contingent MDMA vs. yoked MDMA administration, hippocampus and the dorsal raphe nucleus showed statistically significant changes. The altered expression of several genes involved in neuroadaptative changes and synapse function, which may be related to learning self‐administration behaviour, could be validated in these two brain structures. In conclusion, our study shows a strong effect of MDMA administration on the expression of immunological and inflammatory genes in all the four brain regions studied. In addition, experiments on MDMA self‐administration suggest that the dorsal raphe nucleus and hippocampus may be involved in active MDMA‐seeking behaviour, and show specific alterations on gene expression that support the addictive potential of this drug.
doi_str_mv 10.1111/j.1601-183X.2011.00735.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_315266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3014165071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5745-2e8a8cc43c2c63b79aa2cbacc4516047374af4cd058456536eff8df436c73e503</originalsourceid><addsrcrecordid>eNqNkctuEzEUhi1ERS_wCsgSC-giU3t8jcQmLVAqtWIDEjvL8ZyhDhNPanug2fUx4PX6JHhIGiRWtWT5HPv7j338I4QpqWgZJ4uKSkInVLOvVU0orQhRTFS3T9DB7uDpLuZ6Hx2mtCCEKqbpM7Rf06mgiugDFGYu-x-AbWjwyqY0xlfvrmb4zf3dL3Ap27S-v_t9jH3I9juUpRkcJNz4toUIIXvb4RxtSC76VfZ9KLm7tuFbgXzA-Rrwsh8S4Hm0PjxHe63tErzYrkfoy4f3n88-Ti4_nV-czS4nTiguJjVoq53jzNVOsrmaWlu7uS07ovTEFVPcttw1RGgupGAS2lY3LWfSKQaCsCNEN3VdGpyJ4CA6m01v_b9knDVRtWFU1FIWzeuNZhX7mwFSNkufHHSdDVA6MNOaCim1JI8giSaCEFbIV_-Ri36I5Y-SoWyquZJK8ELp7Wtjn1KE1qyiX9q4NpSY0XCzMKOXZvTVjIabv4ab2yJ9ub1gmC-h2QkfHC7A2w3w03ewfnRhc356WgL2B9yeumw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1398476754</pqid></control><display><type>article</type><title>Active and passive MDMA (‘ecstasy’) intake induces differential transcriptional changes in the mouse brain</title><source>Wiley Online Library Open Access</source><creator>Fernàndez‐Castillo, N. ; Orejarena, M. J. ; Ribasés, M. ; Blanco, E. ; Casas, M. ; Robledo, P. ; Maldonado, R. ; Cormand, B.</creator><creatorcontrib>Fernàndez‐Castillo, N. ; Orejarena, M. J. ; Ribasés, M. ; Blanco, E. ; Casas, M. ; Robledo, P. ; Maldonado, R. ; Cormand, B.</creatorcontrib><description>3,4‐Methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is a recreational drug widely used by adolescents and young adults. Although its rewarding effects are well established, there is controversy on its addictive potential. We aimed to compare the consequences of active and passive MDMA administration on gene expression in the mouse brain since all previous studies were based on passive MDMA administration. We used a yoked‐control operant intravenous self‐administration paradigm combined with microarray technology. Transcriptomic profiles of ventral striatum, frontal cortex, dorsal raphe nucleus and hippocampus were analysed in mice divided in contingent MDMA, yoked MDMA and yoked saline groups, and several changes were validated by quantitative reverse transcription polymerase chain reaction (qRT‐PCR). The comparison of contingent MDMA and yoked MDMA vs. yoked saline mice allowed the identification of differential expression in several genes, most of them with immunological and inflammatory functions, but others being involved in neuroadaptation. In the comparison of contingent MDMA vs. yoked MDMA administration, hippocampus and the dorsal raphe nucleus showed statistically significant changes. The altered expression of several genes involved in neuroadaptative changes and synapse function, which may be related to learning self‐administration behaviour, could be validated in these two brain structures. In conclusion, our study shows a strong effect of MDMA administration on the expression of immunological and inflammatory genes in all the four brain regions studied. In addition, experiments on MDMA self‐administration suggest that the dorsal raphe nucleus and hippocampus may be involved in active MDMA‐seeking behaviour, and show specific alterations on gene expression that support the addictive potential of this drug.</description><identifier>ISSN: 1601-1848</identifier><identifier>EISSN: 1601-183X</identifier><identifier>DOI: 10.1111/j.1601-183X.2011.00735.x</identifier><identifier>PMID: 21951708</identifier><identifier>CODEN: GBBEAO</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adaptation, Physiological ; Addiction ; Adolescence ; Age Factors ; Al·lucinògens ; Animals ; Basal Ganglia - drug effects ; Basal Ganglia - metabolism ; Brain ; Brain - drug effects ; Brain - metabolism ; Cervell ; Conditioning, Operant ; Cortex (frontal) ; DNA microarrays ; dorsal raphe nucleus ; Drogues ; Drug abuse ; Drug-Seeking Behavior - physiology ; Ecstasy ; Efectes secundaris ; Expressió gènica ; Farmacologia ; Frontal Lobe - drug effects ; Frontal Lobe - metabolism ; Gene expression ; Gene Expression Regulation - drug effects ; Hallucinogens - pharmacology ; Hippocampus ; Hippocampus - drug effects ; Hippocampus - metabolism ; Humans ; Inflammation ; Intravenous administration ; Learning ; Male ; MDMA ; Medical research ; Mice ; Mice, Inbred C57BL ; Microarray Analysis ; mouse brain ; N-Methyl-3,4-methylenedioxyamphetamine - pharmacology ; Neostriatum ; Nerve Tissue Proteins - drug effects ; Nerve Tissue Proteins - metabolism ; Operant conditioning ; Polymerase chain reaction ; Raphe Nuclei - drug effects ; Raphe Nuclei - metabolism ; Reinforcement ; Reverse transcription ; Reward ; Self Administration ; Statistical analysis ; Synapses ; Tissue Distribution ; Transcription ; Transcriptome - drug effects ; transcriptomics</subject><ispartof>Genes, brain and behavior, 2012-02, Vol.11 (1), p.38-51</ispartof><rights>2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society</rights><rights>2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.</rights><rights>Wiley-Blackwell. The definitive version is available at www3.interscience.wiley.com info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5745-2e8a8cc43c2c63b79aa2cbacc4516047374af4cd058456536eff8df436c73e503</citedby><cites>FETCH-LOGICAL-c5745-2e8a8cc43c2c63b79aa2cbacc4516047374af4cd058456536eff8df436c73e503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1601-183X.2011.00735.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1601-183X.2011.00735.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,11541,26951,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1601-183X.2011.00735.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21951708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernàndez‐Castillo, N.</creatorcontrib><creatorcontrib>Orejarena, M. J.</creatorcontrib><creatorcontrib>Ribasés, M.</creatorcontrib><creatorcontrib>Blanco, E.</creatorcontrib><creatorcontrib>Casas, M.</creatorcontrib><creatorcontrib>Robledo, P.</creatorcontrib><creatorcontrib>Maldonado, R.</creatorcontrib><creatorcontrib>Cormand, B.</creatorcontrib><title>Active and passive MDMA (‘ecstasy’) intake induces differential transcriptional changes in the mouse brain</title><title>Genes, brain and behavior</title><addtitle>Genes Brain Behav</addtitle><description>3,4‐Methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is a recreational drug widely used by adolescents and young adults. Although its rewarding effects are well established, there is controversy on its addictive potential. We aimed to compare the consequences of active and passive MDMA administration on gene expression in the mouse brain since all previous studies were based on passive MDMA administration. We used a yoked‐control operant intravenous self‐administration paradigm combined with microarray technology. Transcriptomic profiles of ventral striatum, frontal cortex, dorsal raphe nucleus and hippocampus were analysed in mice divided in contingent MDMA, yoked MDMA and yoked saline groups, and several changes were validated by quantitative reverse transcription polymerase chain reaction (qRT‐PCR). The comparison of contingent MDMA and yoked MDMA vs. yoked saline mice allowed the identification of differential expression in several genes, most of them with immunological and inflammatory functions, but others being involved in neuroadaptation. In the comparison of contingent MDMA vs. yoked MDMA administration, hippocampus and the dorsal raphe nucleus showed statistically significant changes. The altered expression of several genes involved in neuroadaptative changes and synapse function, which may be related to learning self‐administration behaviour, could be validated in these two brain structures. In conclusion, our study shows a strong effect of MDMA administration on the expression of immunological and inflammatory genes in all the four brain regions studied. In addition, experiments on MDMA self‐administration suggest that the dorsal raphe nucleus and hippocampus may be involved in active MDMA‐seeking behaviour, and show specific alterations on gene expression that support the addictive potential of this drug.</description><subject>Adaptation, Physiological</subject><subject>Addiction</subject><subject>Adolescence</subject><subject>Age Factors</subject><subject>Al·lucinògens</subject><subject>Animals</subject><subject>Basal Ganglia - drug effects</subject><subject>Basal Ganglia - metabolism</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Cervell</subject><subject>Conditioning, Operant</subject><subject>Cortex (frontal)</subject><subject>DNA microarrays</subject><subject>dorsal raphe nucleus</subject><subject>Drogues</subject><subject>Drug abuse</subject><subject>Drug-Seeking Behavior - physiology</subject><subject>Ecstasy</subject><subject>Efectes secundaris</subject><subject>Expressió gènica</subject><subject>Farmacologia</subject><subject>Frontal Lobe - drug effects</subject><subject>Frontal Lobe - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Hallucinogens - pharmacology</subject><subject>Hippocampus</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Intravenous administration</subject><subject>Learning</subject><subject>Male</subject><subject>MDMA</subject><subject>Medical research</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microarray Analysis</subject><subject>mouse brain</subject><subject>N-Methyl-3,4-methylenedioxyamphetamine - pharmacology</subject><subject>Neostriatum</subject><subject>Nerve Tissue Proteins - drug effects</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Operant conditioning</subject><subject>Polymerase chain reaction</subject><subject>Raphe Nuclei - drug effects</subject><subject>Raphe Nuclei - metabolism</subject><subject>Reinforcement</subject><subject>Reverse transcription</subject><subject>Reward</subject><subject>Self Administration</subject><subject>Statistical analysis</subject><subject>Synapses</subject><subject>Tissue Distribution</subject><subject>Transcription</subject><subject>Transcriptome - drug effects</subject><subject>transcriptomics</subject><issn>1601-1848</issn><issn>1601-183X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNqNkctuEzEUhi1ERS_wCsgSC-giU3t8jcQmLVAqtWIDEjvL8ZyhDhNPanug2fUx4PX6JHhIGiRWtWT5HPv7j338I4QpqWgZJ4uKSkInVLOvVU0orQhRTFS3T9DB7uDpLuZ6Hx2mtCCEKqbpM7Rf06mgiugDFGYu-x-AbWjwyqY0xlfvrmb4zf3dL3Ap27S-v_t9jH3I9juUpRkcJNz4toUIIXvb4RxtSC76VfZ9KLm7tuFbgXzA-Rrwsh8S4Hm0PjxHe63tErzYrkfoy4f3n88-Ti4_nV-czS4nTiguJjVoq53jzNVOsrmaWlu7uS07ovTEFVPcttw1RGgupGAS2lY3LWfSKQaCsCNEN3VdGpyJ4CA6m01v_b9knDVRtWFU1FIWzeuNZhX7mwFSNkufHHSdDVA6MNOaCim1JI8giSaCEFbIV_-Ri36I5Y-SoWyquZJK8ELp7Wtjn1KE1qyiX9q4NpSY0XCzMKOXZvTVjIabv4ab2yJ9ub1gmC-h2QkfHC7A2w3w03ewfnRhc356WgL2B9yeumw</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Fernàndez‐Castillo, N.</creator><creator>Orejarena, M. J.</creator><creator>Ribasés, M.</creator><creator>Blanco, E.</creator><creator>Casas, M.</creator><creator>Robledo, P.</creator><creator>Maldonado, R.</creator><creator>Cormand, B.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><general>Wiley-Blackwell</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>XX2</scope></search><sort><creationdate>201202</creationdate><title>Active and passive MDMA (‘ecstasy’) intake induces differential transcriptional changes in the mouse brain</title><author>Fernàndez‐Castillo, N. ; Orejarena, M. J. ; Ribasés, M. ; Blanco, E. ; Casas, M. ; Robledo, P. ; Maldonado, R. ; Cormand, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5745-2e8a8cc43c2c63b79aa2cbacc4516047374af4cd058456536eff8df436c73e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation, Physiological</topic><topic>Addiction</topic><topic>Adolescence</topic><topic>Age Factors</topic><topic>Al·lucinògens</topic><topic>Animals</topic><topic>Basal Ganglia - drug effects</topic><topic>Basal Ganglia - metabolism</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Cervell</topic><topic>Conditioning, Operant</topic><topic>Cortex (frontal)</topic><topic>DNA microarrays</topic><topic>dorsal raphe nucleus</topic><topic>Drogues</topic><topic>Drug abuse</topic><topic>Drug-Seeking Behavior - physiology</topic><topic>Ecstasy</topic><topic>Efectes secundaris</topic><topic>Expressió gènica</topic><topic>Farmacologia</topic><topic>Frontal Lobe - drug effects</topic><topic>Frontal Lobe - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Hallucinogens - pharmacology</topic><topic>Hippocampus</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Intravenous administration</topic><topic>Learning</topic><topic>Male</topic><topic>MDMA</topic><topic>Medical research</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microarray Analysis</topic><topic>mouse brain</topic><topic>N-Methyl-3,4-methylenedioxyamphetamine - pharmacology</topic><topic>Neostriatum</topic><topic>Nerve Tissue Proteins - drug effects</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Operant conditioning</topic><topic>Polymerase chain reaction</topic><topic>Raphe Nuclei - drug effects</topic><topic>Raphe Nuclei - metabolism</topic><topic>Reinforcement</topic><topic>Reverse transcription</topic><topic>Reward</topic><topic>Self Administration</topic><topic>Statistical analysis</topic><topic>Synapses</topic><topic>Tissue Distribution</topic><topic>Transcription</topic><topic>Transcriptome - drug effects</topic><topic>transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernàndez‐Castillo, N.</creatorcontrib><creatorcontrib>Orejarena, M. J.</creatorcontrib><creatorcontrib>Ribasés, M.</creatorcontrib><creatorcontrib>Blanco, E.</creatorcontrib><creatorcontrib>Casas, M.</creatorcontrib><creatorcontrib>Robledo, P.</creatorcontrib><creatorcontrib>Maldonado, R.</creatorcontrib><creatorcontrib>Cormand, B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><jtitle>Genes, brain and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fernàndez‐Castillo, N.</au><au>Orejarena, M. J.</au><au>Ribasés, M.</au><au>Blanco, E.</au><au>Casas, M.</au><au>Robledo, P.</au><au>Maldonado, R.</au><au>Cormand, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active and passive MDMA (‘ecstasy’) intake induces differential transcriptional changes in the mouse brain</atitle><jtitle>Genes, brain and behavior</jtitle><addtitle>Genes Brain Behav</addtitle><date>2012-02</date><risdate>2012</risdate><volume>11</volume><issue>1</issue><spage>38</spage><epage>51</epage><pages>38-51</pages><issn>1601-1848</issn><eissn>1601-183X</eissn><coden>GBBEAO</coden><abstract>3,4‐Methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is a recreational drug widely used by adolescents and young adults. Although its rewarding effects are well established, there is controversy on its addictive potential. We aimed to compare the consequences of active and passive MDMA administration on gene expression in the mouse brain since all previous studies were based on passive MDMA administration. We used a yoked‐control operant intravenous self‐administration paradigm combined with microarray technology. Transcriptomic profiles of ventral striatum, frontal cortex, dorsal raphe nucleus and hippocampus were analysed in mice divided in contingent MDMA, yoked MDMA and yoked saline groups, and several changes were validated by quantitative reverse transcription polymerase chain reaction (qRT‐PCR). The comparison of contingent MDMA and yoked MDMA vs. yoked saline mice allowed the identification of differential expression in several genes, most of them with immunological and inflammatory functions, but others being involved in neuroadaptation. In the comparison of contingent MDMA vs. yoked MDMA administration, hippocampus and the dorsal raphe nucleus showed statistically significant changes. The altered expression of several genes involved in neuroadaptative changes and synapse function, which may be related to learning self‐administration behaviour, could be validated in these two brain structures. In conclusion, our study shows a strong effect of MDMA administration on the expression of immunological and inflammatory genes in all the four brain regions studied. In addition, experiments on MDMA self‐administration suggest that the dorsal raphe nucleus and hippocampus may be involved in active MDMA‐seeking behaviour, and show specific alterations on gene expression that support the addictive potential of this drug.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21951708</pmid><doi>10.1111/j.1601-183X.2011.00735.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1601-1848
ispartof Genes, brain and behavior, 2012-02, Vol.11 (1), p.38-51
issn 1601-1848
1601-183X
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_315266
source Wiley Online Library Open Access
subjects Adaptation, Physiological
Addiction
Adolescence
Age Factors
Al·lucinògens
Animals
Basal Ganglia - drug effects
Basal Ganglia - metabolism
Brain
Brain - drug effects
Brain - metabolism
Cervell
Conditioning, Operant
Cortex (frontal)
DNA microarrays
dorsal raphe nucleus
Drogues
Drug abuse
Drug-Seeking Behavior - physiology
Ecstasy
Efectes secundaris
Expressió gènica
Farmacologia
Frontal Lobe - drug effects
Frontal Lobe - metabolism
Gene expression
Gene Expression Regulation - drug effects
Hallucinogens - pharmacology
Hippocampus
Hippocampus - drug effects
Hippocampus - metabolism
Humans
Inflammation
Intravenous administration
Learning
Male
MDMA
Medical research
Mice
Mice, Inbred C57BL
Microarray Analysis
mouse brain
N-Methyl-3,4-methylenedioxyamphetamine - pharmacology
Neostriatum
Nerve Tissue Proteins - drug effects
Nerve Tissue Proteins - metabolism
Operant conditioning
Polymerase chain reaction
Raphe Nuclei - drug effects
Raphe Nuclei - metabolism
Reinforcement
Reverse transcription
Reward
Self Administration
Statistical analysis
Synapses
Tissue Distribution
Transcription
Transcriptome - drug effects
transcriptomics
title Active and passive MDMA (‘ecstasy’) intake induces differential transcriptional changes in the mouse brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20and%20passive%20MDMA%20(%E2%80%98ecstasy%E2%80%99)%20intake%20induces%20differential%20transcriptional%20changes%20in%20the%20mouse%20brain&rft.jtitle=Genes,%20brain%20and%20behavior&rft.au=Fern%C3%A0ndez%E2%80%90Castillo,%20N.&rft.date=2012-02&rft.volume=11&rft.issue=1&rft.spage=38&rft.epage=51&rft.pages=38-51&rft.issn=1601-1848&rft.eissn=1601-183X&rft.coden=GBBEAO&rft_id=info:doi/10.1111/j.1601-183X.2011.00735.x&rft_dat=%3Cproquest_24P%3E3014165071%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1398476754&rft_id=info:pmid/21951708&rfr_iscdi=true