Fluid flow simulation and permeability computation in deformed porous carbonate grainstones

•An MRT-LBM was used for obtaining viscosity-independent permeability in deformed carbonates.•The influence of the pore-network morphology on the permeability was investigated.•Fault core shows significant heterogeneity and permeability anisotropy in comparison to the host rock. In deformed porous c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources 2018-05, Vol.115, p.95-111
Hauptverfasser: Zambrano, Miller, Tondi, Emanuele, Mancini, Lucia, Lanzafame, Gabriele, Trias, F. Xavier, Arzilli, Fabio, Materazzi, Marco, Torrieri, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111
container_issue
container_start_page 95
container_title Advances in water resources
container_volume 115
creator Zambrano, Miller
Tondi, Emanuele
Mancini, Lucia
Lanzafame, Gabriele
Trias, F. Xavier
Arzilli, Fabio
Materazzi, Marco
Torrieri, Stefano
description •An MRT-LBM was used for obtaining viscosity-independent permeability in deformed carbonates.•The influence of the pore-network morphology on the permeability was investigated.•Fault core shows significant heterogeneity and permeability anisotropy in comparison to the host rock. In deformed porous carbonates, the architecture of the pore network may be modified by deformation or diagenetic processes altering the permeability with respect to the pristine rock. The effects of the pore texture and morphology on permeability in porous rocks have been widely investigated due to the importance during the evaluation of geofluid reservoirs. In this study, these effects are assessed by combining synchrotron X-ray computed microtomography (SR micro-CT) and computational fluid dynamics. The studied samples pertain to deformed porous carbonate grainstones highly affected by deformation bands (DBs) exposed in Northwestern Sicily and Abruzzo regions, Italy. The high-resolution SR micro-CT images of the samples, acquired at the SYRMEP beamline of the Elettra - Sincrotrone Trieste laboratory (Italy), were used for simulating a pressure-driven flow by using the lattice-Boltzmann method (LBM). For the experiments, a multiple relaxation time (MRT) model with the D3Q19 scheme was used to avoid viscosity-dependent results of permeability. The permeability was calculated using Darcy's law once steady conditions were reached. After the simulations, the pore-network properties (effective porosity, specific surface area, and geometrical tortuosity) were calculated using 3D images of the velocity fields. These images were segmented considering a velocity threshold value higher than zero. The study showed that DBs may generate significant heterogeneity and anisotropy of the permeability of the evaluated rock samples. Cataclasis and cementation process taking place within the DBs reduce the effective porosity and therefore the permeability. Contrary to this, pressure dissolution and faulting may generate connected channels which contribute to the permeability only parallel to the DB.
doi_str_mv 10.1016/j.advwatres.2018.02.016
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_309769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309170817309934</els_id><sourcerecordid>2083800704</sourcerecordid><originalsourceid>FETCH-LOGICAL-a457t-14269080b3810191f2512c8b7854b4f2042754cddf58fca0899cc60d465a73cf3</originalsourceid><addsrcrecordid>eNqFUE1LAzEQDaJgrf4GFzzvOslmN9ljKX6B4EVPHkI2H5Ky3dQk29J_b0qLHj0Mw8y893jzELrFUGHA7f2qknq7kymYWBHAvAJS5f0ZmmHOSNm1DTtHM6ihKzEDfomuYlwBAKeMzNDn4zA5XdjB74ro1tMgk_NjIUddbExYG9m7waV9ofx6M6Xj0Y2FNtbnawb54KdYKBl6P8pkiq8g3RiTH028RhdWDtHcnPocfTw-vC-fy9e3p5fl4rWUtGGpxJS0HXDoa54f6rAlDSaK94w3tKeWACWsoUpr23CrJPCuU6oFTdtGslrZeo7wUVfFSYlglAlKJuGl-xsORYARkXNgbZc5d0fOJvjvycQkVn4KY7aZYbzmAAxoRrGTcvAxBmPFJri1DHuBQRzSFyvxm744pC-AiLzPzMWRafLjW2eCiMqZURntsqcktHf_avwAnCuTBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083800704</pqid></control><display><type>article</type><title>Fluid flow simulation and permeability computation in deformed porous carbonate grainstones</title><source>Elsevier ScienceDirect Journals Complete</source><source>Recercat</source><creator>Zambrano, Miller ; Tondi, Emanuele ; Mancini, Lucia ; Lanzafame, Gabriele ; Trias, F. Xavier ; Arzilli, Fabio ; Materazzi, Marco ; Torrieri, Stefano</creator><creatorcontrib>Zambrano, Miller ; Tondi, Emanuele ; Mancini, Lucia ; Lanzafame, Gabriele ; Trias, F. Xavier ; Arzilli, Fabio ; Materazzi, Marco ; Torrieri, Stefano</creatorcontrib><description>•An MRT-LBM was used for obtaining viscosity-independent permeability in deformed carbonates.•The influence of the pore-network morphology on the permeability was investigated.•Fault core shows significant heterogeneity and permeability anisotropy in comparison to the host rock. In deformed porous carbonates, the architecture of the pore network may be modified by deformation or diagenetic processes altering the permeability with respect to the pristine rock. The effects of the pore texture and morphology on permeability in porous rocks have been widely investigated due to the importance during the evaluation of geofluid reservoirs. In this study, these effects are assessed by combining synchrotron X-ray computed microtomography (SR micro-CT) and computational fluid dynamics. The studied samples pertain to deformed porous carbonate grainstones highly affected by deformation bands (DBs) exposed in Northwestern Sicily and Abruzzo regions, Italy. The high-resolution SR micro-CT images of the samples, acquired at the SYRMEP beamline of the Elettra - Sincrotrone Trieste laboratory (Italy), were used for simulating a pressure-driven flow by using the lattice-Boltzmann method (LBM). For the experiments, a multiple relaxation time (MRT) model with the D3Q19 scheme was used to avoid viscosity-dependent results of permeability. The permeability was calculated using Darcy's law once steady conditions were reached. After the simulations, the pore-network properties (effective porosity, specific surface area, and geometrical tortuosity) were calculated using 3D images of the velocity fields. These images were segmented considering a velocity threshold value higher than zero. The study showed that DBs may generate significant heterogeneity and anisotropy of the permeability of the evaluated rock samples. Cataclasis and cementation process taking place within the DBs reduce the effective porosity and therefore the permeability. Contrary to this, pressure dissolution and faulting may generate connected channels which contribute to the permeability only parallel to the DB.</description><identifier>ISSN: 0309-1708</identifier><identifier>EISSN: 1872-9657</identifier><identifier>DOI: 10.1016/j.advwatres.2018.02.016</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Anisotropy ; Architecture ; Carbonates ; Carbonats ; Cementation ; Computation ; Computational fluid dynamics ; Computed tomography ; Computer applications ; Computer simulation ; Crystal lattices ; Darcy's law ; Darcys law ; Deformation ; Deformation bands ; Diagenesis ; Dinàmica de fluids computacional ; Dynamics ; Effective porosity ; Enginyeria mecànica ; Evaluation ; Flow simulation ; Fluid dynamics ; Fluid flow ; Heterogeneity ; Hydrodynamics ; Image acquisition ; Image resolution ; Lattice-Boltzmann method ; Mathematical morphology ; Mecànica de fluids ; Membrane permeability ; Permeabilitat ; Permeability ; Porositat ; Porosity ; Pressure ; Proves ; Relaxation time ; Rocks ; Sediment samples ; Surface area ; Synchrotron radiation ; Synchrotron X-ray computed microtomography ; Tomography ; Tortuosity ; Velocity ; Velocity distribution ; Viscosity ; Water flow ; X ray microtomography ; Àrees temàtiques de la UPC</subject><ispartof>Advances in water resources, 2018-05, Vol.115, p.95-111</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. May 2018</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a457t-14269080b3810191f2512c8b7854b4f2042754cddf58fca0899cc60d465a73cf3</citedby><cites>FETCH-LOGICAL-a457t-14269080b3810191f2512c8b7854b4f2042754cddf58fca0899cc60d465a73cf3</cites><orcidid>0000-0002-9480-5680 ; 0000-0001-5352-9918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.advwatres.2018.02.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,26974,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zambrano, Miller</creatorcontrib><creatorcontrib>Tondi, Emanuele</creatorcontrib><creatorcontrib>Mancini, Lucia</creatorcontrib><creatorcontrib>Lanzafame, Gabriele</creatorcontrib><creatorcontrib>Trias, F. Xavier</creatorcontrib><creatorcontrib>Arzilli, Fabio</creatorcontrib><creatorcontrib>Materazzi, Marco</creatorcontrib><creatorcontrib>Torrieri, Stefano</creatorcontrib><title>Fluid flow simulation and permeability computation in deformed porous carbonate grainstones</title><title>Advances in water resources</title><description>•An MRT-LBM was used for obtaining viscosity-independent permeability in deformed carbonates.•The influence of the pore-network morphology on the permeability was investigated.•Fault core shows significant heterogeneity and permeability anisotropy in comparison to the host rock. In deformed porous carbonates, the architecture of the pore network may be modified by deformation or diagenetic processes altering the permeability with respect to the pristine rock. The effects of the pore texture and morphology on permeability in porous rocks have been widely investigated due to the importance during the evaluation of geofluid reservoirs. In this study, these effects are assessed by combining synchrotron X-ray computed microtomography (SR micro-CT) and computational fluid dynamics. The studied samples pertain to deformed porous carbonate grainstones highly affected by deformation bands (DBs) exposed in Northwestern Sicily and Abruzzo regions, Italy. The high-resolution SR micro-CT images of the samples, acquired at the SYRMEP beamline of the Elettra - Sincrotrone Trieste laboratory (Italy), were used for simulating a pressure-driven flow by using the lattice-Boltzmann method (LBM). For the experiments, a multiple relaxation time (MRT) model with the D3Q19 scheme was used to avoid viscosity-dependent results of permeability. The permeability was calculated using Darcy's law once steady conditions were reached. After the simulations, the pore-network properties (effective porosity, specific surface area, and geometrical tortuosity) were calculated using 3D images of the velocity fields. These images were segmented considering a velocity threshold value higher than zero. The study showed that DBs may generate significant heterogeneity and anisotropy of the permeability of the evaluated rock samples. Cataclasis and cementation process taking place within the DBs reduce the effective porosity and therefore the permeability. Contrary to this, pressure dissolution and faulting may generate connected channels which contribute to the permeability only parallel to the DB.</description><subject>Anisotropy</subject><subject>Architecture</subject><subject>Carbonates</subject><subject>Carbonats</subject><subject>Cementation</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computed tomography</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Crystal lattices</subject><subject>Darcy's law</subject><subject>Darcys law</subject><subject>Deformation</subject><subject>Deformation bands</subject><subject>Diagenesis</subject><subject>Dinàmica de fluids computacional</subject><subject>Dynamics</subject><subject>Effective porosity</subject><subject>Enginyeria mecànica</subject><subject>Evaluation</subject><subject>Flow simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heterogeneity</subject><subject>Hydrodynamics</subject><subject>Image acquisition</subject><subject>Image resolution</subject><subject>Lattice-Boltzmann method</subject><subject>Mathematical morphology</subject><subject>Mecànica de fluids</subject><subject>Membrane permeability</subject><subject>Permeabilitat</subject><subject>Permeability</subject><subject>Porositat</subject><subject>Porosity</subject><subject>Pressure</subject><subject>Proves</subject><subject>Relaxation time</subject><subject>Rocks</subject><subject>Sediment samples</subject><subject>Surface area</subject><subject>Synchrotron radiation</subject><subject>Synchrotron X-ray computed microtomography</subject><subject>Tomography</subject><subject>Tortuosity</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><subject>Water flow</subject><subject>X ray microtomography</subject><subject>Àrees temàtiques de la UPC</subject><issn>0309-1708</issn><issn>1872-9657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFUE1LAzEQDaJgrf4GFzzvOslmN9ljKX6B4EVPHkI2H5Ky3dQk29J_b0qLHj0Mw8y893jzELrFUGHA7f2qknq7kymYWBHAvAJS5f0ZmmHOSNm1DTtHM6ihKzEDfomuYlwBAKeMzNDn4zA5XdjB74ro1tMgk_NjIUddbExYG9m7waV9ofx6M6Xj0Y2FNtbnawb54KdYKBl6P8pkiq8g3RiTH028RhdWDtHcnPocfTw-vC-fy9e3p5fl4rWUtGGpxJS0HXDoa54f6rAlDSaK94w3tKeWACWsoUpr23CrJPCuU6oFTdtGslrZeo7wUVfFSYlglAlKJuGl-xsORYARkXNgbZc5d0fOJvjvycQkVn4KY7aZYbzmAAxoRrGTcvAxBmPFJri1DHuBQRzSFyvxm744pC-AiLzPzMWRafLjW2eCiMqZURntsqcktHf_avwAnCuTBQ</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Zambrano, Miller</creator><creator>Tondi, Emanuele</creator><creator>Mancini, Lucia</creator><creator>Lanzafame, Gabriele</creator><creator>Trias, F. Xavier</creator><creator>Arzilli, Fabio</creator><creator>Materazzi, Marco</creator><creator>Torrieri, Stefano</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QH</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TG</scope><scope>7UA</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0002-9480-5680</orcidid><orcidid>https://orcid.org/0000-0001-5352-9918</orcidid></search><sort><creationdate>201805</creationdate><title>Fluid flow simulation and permeability computation in deformed porous carbonate grainstones</title><author>Zambrano, Miller ; Tondi, Emanuele ; Mancini, Lucia ; Lanzafame, Gabriele ; Trias, F. Xavier ; Arzilli, Fabio ; Materazzi, Marco ; Torrieri, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a457t-14269080b3810191f2512c8b7854b4f2042754cddf58fca0899cc60d465a73cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Architecture</topic><topic>Carbonates</topic><topic>Carbonats</topic><topic>Cementation</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computed tomography</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Crystal lattices</topic><topic>Darcy's law</topic><topic>Darcys law</topic><topic>Deformation</topic><topic>Deformation bands</topic><topic>Diagenesis</topic><topic>Dinàmica de fluids computacional</topic><topic>Dynamics</topic><topic>Effective porosity</topic><topic>Enginyeria mecànica</topic><topic>Evaluation</topic><topic>Flow simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heterogeneity</topic><topic>Hydrodynamics</topic><topic>Image acquisition</topic><topic>Image resolution</topic><topic>Lattice-Boltzmann method</topic><topic>Mathematical morphology</topic><topic>Mecànica de fluids</topic><topic>Membrane permeability</topic><topic>Permeabilitat</topic><topic>Permeability</topic><topic>Porositat</topic><topic>Porosity</topic><topic>Pressure</topic><topic>Proves</topic><topic>Relaxation time</topic><topic>Rocks</topic><topic>Sediment samples</topic><topic>Surface area</topic><topic>Synchrotron radiation</topic><topic>Synchrotron X-ray computed microtomography</topic><topic>Tomography</topic><topic>Tortuosity</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><topic>Water flow</topic><topic>X ray microtomography</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zambrano, Miller</creatorcontrib><creatorcontrib>Tondi, Emanuele</creatorcontrib><creatorcontrib>Mancini, Lucia</creatorcontrib><creatorcontrib>Lanzafame, Gabriele</creatorcontrib><creatorcontrib>Trias, F. Xavier</creatorcontrib><creatorcontrib>Arzilli, Fabio</creatorcontrib><creatorcontrib>Materazzi, Marco</creatorcontrib><creatorcontrib>Torrieri, Stefano</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Materials Research Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Recercat</collection><jtitle>Advances in water resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zambrano, Miller</au><au>Tondi, Emanuele</au><au>Mancini, Lucia</au><au>Lanzafame, Gabriele</au><au>Trias, F. Xavier</au><au>Arzilli, Fabio</au><au>Materazzi, Marco</au><au>Torrieri, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluid flow simulation and permeability computation in deformed porous carbonate grainstones</atitle><jtitle>Advances in water resources</jtitle><date>2018-05</date><risdate>2018</risdate><volume>115</volume><spage>95</spage><epage>111</epage><pages>95-111</pages><issn>0309-1708</issn><eissn>1872-9657</eissn><abstract>•An MRT-LBM was used for obtaining viscosity-independent permeability in deformed carbonates.•The influence of the pore-network morphology on the permeability was investigated.•Fault core shows significant heterogeneity and permeability anisotropy in comparison to the host rock. In deformed porous carbonates, the architecture of the pore network may be modified by deformation or diagenetic processes altering the permeability with respect to the pristine rock. The effects of the pore texture and morphology on permeability in porous rocks have been widely investigated due to the importance during the evaluation of geofluid reservoirs. In this study, these effects are assessed by combining synchrotron X-ray computed microtomography (SR micro-CT) and computational fluid dynamics. The studied samples pertain to deformed porous carbonate grainstones highly affected by deformation bands (DBs) exposed in Northwestern Sicily and Abruzzo regions, Italy. The high-resolution SR micro-CT images of the samples, acquired at the SYRMEP beamline of the Elettra - Sincrotrone Trieste laboratory (Italy), were used for simulating a pressure-driven flow by using the lattice-Boltzmann method (LBM). For the experiments, a multiple relaxation time (MRT) model with the D3Q19 scheme was used to avoid viscosity-dependent results of permeability. The permeability was calculated using Darcy's law once steady conditions were reached. After the simulations, the pore-network properties (effective porosity, specific surface area, and geometrical tortuosity) were calculated using 3D images of the velocity fields. These images were segmented considering a velocity threshold value higher than zero. The study showed that DBs may generate significant heterogeneity and anisotropy of the permeability of the evaluated rock samples. Cataclasis and cementation process taking place within the DBs reduce the effective porosity and therefore the permeability. Contrary to this, pressure dissolution and faulting may generate connected channels which contribute to the permeability only parallel to the DB.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.advwatres.2018.02.016</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9480-5680</orcidid><orcidid>https://orcid.org/0000-0001-5352-9918</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0309-1708
ispartof Advances in water resources, 2018-05, Vol.115, p.95-111
issn 0309-1708
1872-9657
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_309769
source Elsevier ScienceDirect Journals Complete; Recercat
subjects Anisotropy
Architecture
Carbonates
Carbonats
Cementation
Computation
Computational fluid dynamics
Computed tomography
Computer applications
Computer simulation
Crystal lattices
Darcy's law
Darcys law
Deformation
Deformation bands
Diagenesis
Dinàmica de fluids computacional
Dynamics
Effective porosity
Enginyeria mecànica
Evaluation
Flow simulation
Fluid dynamics
Fluid flow
Heterogeneity
Hydrodynamics
Image acquisition
Image resolution
Lattice-Boltzmann method
Mathematical morphology
Mecànica de fluids
Membrane permeability
Permeabilitat
Permeability
Porositat
Porosity
Pressure
Proves
Relaxation time
Rocks
Sediment samples
Surface area
Synchrotron radiation
Synchrotron X-ray computed microtomography
Tomography
Tortuosity
Velocity
Velocity distribution
Viscosity
Water flow
X ray microtomography
Àrees temàtiques de la UPC
title Fluid flow simulation and permeability computation in deformed porous carbonate grainstones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluid%20flow%20simulation%20and%20permeability%20computation%20in%20deformed%20porous%20carbonate%20grainstones&rft.jtitle=Advances%20in%20water%20resources&rft.au=Zambrano,%20Miller&rft.date=2018-05&rft.volume=115&rft.spage=95&rft.epage=111&rft.pages=95-111&rft.issn=0309-1708&rft.eissn=1872-9657&rft_id=info:doi/10.1016/j.advwatres.2018.02.016&rft_dat=%3Cproquest_csuc_%3E2083800704%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083800704&rft_id=info:pmid/&rft_els_id=S0309170817309934&rfr_iscdi=true