A path-level exact parallelization strategy for sequential simulation
Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different...
Gespeichert in:
Veröffentlicht in: | Computers & geosciences 2018-01, Vol.110, p.10-22 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | |
container_start_page | 10 |
container_title | Computers & geosciences |
container_volume | 110 |
creator | Peredo, Oscar F. Baeza, Daniel Ortiz, Julián M. Herrero, José R. |
description | Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.
•An exact parallelization strategy is proposed for sequential simulation algorithms.•Case studies are presented for SGSIM and SISIM from GSLIB.•Large scale domains of 100 million nodes are simulated. |
doi_str_mv | 10.1016/j.cageo.2017.09.011 |
format | Article |
fullrecord | <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_309064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098300417301048</els_id><sourcerecordid>oai_recercat_cat_2072_309064</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-9a62229962597ffa1bd26323339a360e9084470f2e7473bb0a72ff498cd85f2c3</originalsourceid><addsrcrecordid>eNp9kM1OwzAMgCMEEmPwBFz6Ai1O0jXNgcM0jR9pEhc4R17qjEzdOpJsYjw93Y_EjYNl2fJnyx9j9xwKDrx6WBYWF9QVArgqQBfA-QUb8FrJXNUgL9kAQNe5BCiv2U2MSwAQoh4N2HScbTB95i3tqM3oG23qGwHbllr_g8l36yymgIkW-8x1IYv0taV18thm0a-27XHkll05bCPdnfOQfTxN3ycv-ezt-XUynuVYcplyjZUQQutKjLRyDvm8EZUUUkqNsgLSUJelAidIlUrO54BKOFfq2jb1yAkrh4yf9tq4tSaQpWAxmQ79X3EIAUoYCRqqsmfkmQldjIGc2QS_wrA3HMzBnlmaoz1zsGdAm95eTz2eKOrf2XkKJlpPa0uN7y8l03T-X_4XTih5JQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A path-level exact parallelization strategy for sequential simulation</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Peredo, Oscar F. ; Baeza, Daniel ; Ortiz, Julián M. ; Herrero, José R.</creator><creatorcontrib>Peredo, Oscar F. ; Baeza, Daniel ; Ortiz, Julián M. ; Herrero, José R.</creatorcontrib><description>Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.
•An exact parallelization strategy is proposed for sequential simulation algorithms.•Case studies are presented for SGSIM and SISIM from GSLIB.•Large scale domains of 100 million nodes are simulated.</description><identifier>ISSN: 0098-3004</identifier><identifier>EISSN: 1873-7803</identifier><identifier>DOI: 10.1016/j.cageo.2017.09.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bayesian approaches ; Enginyeria civil ; Geologia ; Geology ; Geostatistical modelling ; Informàtica ; Informàtica teòrica ; Mathematical models ; Models matemàtics ; Mètodes estadístics ; Parallel simulations ; Parallelization strategies ; Sequential Gaussian simulation ; Sequential indicator simulations ; Sequential simulation ; Single- machines ; Statistical methods ; Àrees temàtiques de la UPC</subject><ispartof>Computers & geosciences, 2018-01, Vol.110, p.10-22</ispartof><rights>2017 Elsevier Ltd</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-9a62229962597ffa1bd26323339a360e9084470f2e7473bb0a72ff498cd85f2c3</citedby><cites>FETCH-LOGICAL-a413t-9a62229962597ffa1bd26323339a360e9084470f2e7473bb0a72ff498cd85f2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098300417301048$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Peredo, Oscar F.</creatorcontrib><creatorcontrib>Baeza, Daniel</creatorcontrib><creatorcontrib>Ortiz, Julián M.</creatorcontrib><creatorcontrib>Herrero, José R.</creatorcontrib><title>A path-level exact parallelization strategy for sequential simulation</title><title>Computers & geosciences</title><description>Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.
•An exact parallelization strategy is proposed for sequential simulation algorithms.•Case studies are presented for SGSIM and SISIM from GSLIB.•Large scale domains of 100 million nodes are simulated.</description><subject>Bayesian approaches</subject><subject>Enginyeria civil</subject><subject>Geologia</subject><subject>Geology</subject><subject>Geostatistical modelling</subject><subject>Informàtica</subject><subject>Informàtica teòrica</subject><subject>Mathematical models</subject><subject>Models matemàtics</subject><subject>Mètodes estadístics</subject><subject>Parallel simulations</subject><subject>Parallelization strategies</subject><subject>Sequential Gaussian simulation</subject><subject>Sequential indicator simulations</subject><subject>Sequential simulation</subject><subject>Single- machines</subject><subject>Statistical methods</subject><subject>Àrees temàtiques de la UPC</subject><issn>0098-3004</issn><issn>1873-7803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kM1OwzAMgCMEEmPwBFz6Ai1O0jXNgcM0jR9pEhc4R17qjEzdOpJsYjw93Y_EjYNl2fJnyx9j9xwKDrx6WBYWF9QVArgqQBfA-QUb8FrJXNUgL9kAQNe5BCiv2U2MSwAQoh4N2HScbTB95i3tqM3oG23qGwHbllr_g8l36yymgIkW-8x1IYv0taV18thm0a-27XHkll05bCPdnfOQfTxN3ycv-ezt-XUynuVYcplyjZUQQutKjLRyDvm8EZUUUkqNsgLSUJelAidIlUrO54BKOFfq2jb1yAkrh4yf9tq4tSaQpWAxmQ79X3EIAUoYCRqqsmfkmQldjIGc2QS_wrA3HMzBnlmaoz1zsGdAm95eTz2eKOrf2XkKJlpPa0uN7y8l03T-X_4XTih5JQ</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Peredo, Oscar F.</creator><creator>Baeza, Daniel</creator><creator>Ortiz, Julián M.</creator><creator>Herrero, José R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>201801</creationdate><title>A path-level exact parallelization strategy for sequential simulation</title><author>Peredo, Oscar F. ; Baeza, Daniel ; Ortiz, Julián M. ; Herrero, José R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-9a62229962597ffa1bd26323339a360e9084470f2e7473bb0a72ff498cd85f2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian approaches</topic><topic>Enginyeria civil</topic><topic>Geologia</topic><topic>Geology</topic><topic>Geostatistical modelling</topic><topic>Informàtica</topic><topic>Informàtica teòrica</topic><topic>Mathematical models</topic><topic>Models matemàtics</topic><topic>Mètodes estadístics</topic><topic>Parallel simulations</topic><topic>Parallelization strategies</topic><topic>Sequential Gaussian simulation</topic><topic>Sequential indicator simulations</topic><topic>Sequential simulation</topic><topic>Single- machines</topic><topic>Statistical methods</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peredo, Oscar F.</creatorcontrib><creatorcontrib>Baeza, Daniel</creatorcontrib><creatorcontrib>Ortiz, Julián M.</creatorcontrib><creatorcontrib>Herrero, José R.</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Computers & geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peredo, Oscar F.</au><au>Baeza, Daniel</au><au>Ortiz, Julián M.</au><au>Herrero, José R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A path-level exact parallelization strategy for sequential simulation</atitle><jtitle>Computers & geosciences</jtitle><date>2018-01</date><risdate>2018</risdate><volume>110</volume><spage>10</spage><epage>22</epage><pages>10-22</pages><issn>0098-3004</issn><eissn>1873-7803</eissn><abstract>Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.
•An exact parallelization strategy is proposed for sequential simulation algorithms.•Case studies are presented for SGSIM and SISIM from GSLIB.•Large scale domains of 100 million nodes are simulated.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cageo.2017.09.011</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-3004 |
ispartof | Computers & geosciences, 2018-01, Vol.110, p.10-22 |
issn | 0098-3004 1873-7803 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_309064 |
source | Recercat; Elsevier ScienceDirect Journals |
subjects | Bayesian approaches Enginyeria civil Geologia Geology Geostatistical modelling Informàtica Informàtica teòrica Mathematical models Models matemàtics Mètodes estadístics Parallel simulations Parallelization strategies Sequential Gaussian simulation Sequential indicator simulations Sequential simulation Single- machines Statistical methods Àrees temàtiques de la UPC |
title | A path-level exact parallelization strategy for sequential simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20path-level%20exact%20parallelization%20strategy%20for%20sequential%20simulation&rft.jtitle=Computers%20&%20geosciences&rft.au=Peredo,%20Oscar%20F.&rft.date=2018-01&rft.volume=110&rft.spage=10&rft.epage=22&rft.pages=10-22&rft.issn=0098-3004&rft.eissn=1873-7803&rft_id=info:doi/10.1016/j.cageo.2017.09.011&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_309064%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0098300417301048&rfr_iscdi=true |