A phase-field model for solute-assisted brittle fracture in elastic-plastic solids

A phase-field theory of brittle fracture in elastoplastic solids hosting mobile interstitial solute species is developed in this paper. The theory, which is formulated within the framework of modern continuum mechanics, provides a systematic way to describe the interplay between solute migration and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of plasticity 2018-03, Vol.102, p.16-40
Hauptverfasser: Duda, F.P., Ciarbonetti, A., Toro, S., Huespe, A.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue
container_start_page 16
container_title International journal of plasticity
container_volume 102
creator Duda, F.P.
Ciarbonetti, A.
Toro, S.
Huespe, A.E.
description A phase-field theory of brittle fracture in elastoplastic solids hosting mobile interstitial solute species is developed in this paper. The theory, which is formulated within the framework of modern continuum mechanics, provides a systematic way to describe the interplay between solute migration and solid deformation and fracture. A specialization of the theory, which accounts for both solute-induced deformation and solute-assisted fracture as well as for their mutual effects on solute migration, is selected for numerical studies. Toward this end, a numerical model based on the finite-element method for spatial discretization and a splitting scheme with sub-stepping for the time integration is proposed. The model is applied to the study of hydrogen-assisted crack propagation of high-strength steel specimens under sustained loads. The solutions obtained are compared with numerical and experimental results reported in the literature. It is shown that the proposed model has the capability to capture important features presented in the studied phenomenon. •A general theory coupling deformation, species migration and fracture in elasto-plastic solids is presented.•The general theory is formulated within a modern continuum mechanics framework.•The theory is then specialized for modeling hydrogen assisted cracking problems of high strength steel specimens.•A numerical strategy using finite elements and phase field model is proposed and implemented.•The solutions obtained with the phase-field model are validated by comparing them with numerical and experimental results.
doi_str_mv 10.1016/j.ijplas.2017.11.004
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_308810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641917304552</els_id><sourcerecordid>2041749473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-7a6557d792e42e7b2e776e1a4c8956438cf3be82f1260b8471aed4cd4207d49b3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Fz62ZNG3ai7As_oMFQfQc0mSKKd1NTVLBb2-WCt48DMPA-72ZeYRcAy2AQn07FHaYRhUKRkEUAAWl_ISsoBFtzqDip2RFBW_zmkN7Ti5CGCilVVPCirxusulDBcx7i6PJ9s7gmPXOZ8GNc8RchWBDRJN13sY4YtZ7pePsMbOHDNPOaHU-Lf3IWBMuyVmvxoBXv31N3h_u37ZP-e7l8Xm72eWaMxZzoeqqEka0DDlD0aUSNYLiummrmpeN7ssOG9YDq2nXcAEKDdeGMyoMb7tyTWDx1WHW0qNGr1WUTtm_4VhJz2RJmwZoYm4WZvLuc8YQ5eBmf0hnJhmHFBIXZVLxX2fvQvDYy8nbvfLfEqg8Ji4HuSQuj4lLAJkST9jdgmH6-suil0FbPGg0Nh0UpXH2f4Mf-uCLNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2041749473</pqid></control><display><type>article</type><title>A phase-field model for solute-assisted brittle fracture in elastic-plastic solids</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Duda, F.P. ; Ciarbonetti, A. ; Toro, S. ; Huespe, A.E.</creator><creatorcontrib>Duda, F.P. ; Ciarbonetti, A. ; Toro, S. ; Huespe, A.E.</creatorcontrib><description>A phase-field theory of brittle fracture in elastoplastic solids hosting mobile interstitial solute species is developed in this paper. The theory, which is formulated within the framework of modern continuum mechanics, provides a systematic way to describe the interplay between solute migration and solid deformation and fracture. A specialization of the theory, which accounts for both solute-induced deformation and solute-assisted fracture as well as for their mutual effects on solute migration, is selected for numerical studies. Toward this end, a numerical model based on the finite-element method for spatial discretization and a splitting scheme with sub-stepping for the time integration is proposed. The model is applied to the study of hydrogen-assisted crack propagation of high-strength steel specimens under sustained loads. The solutions obtained are compared with numerical and experimental results reported in the literature. It is shown that the proposed model has the capability to capture important features presented in the studied phenomenon. •A general theory coupling deformation, species migration and fracture in elasto-plastic solids is presented.•The general theory is formulated within a modern continuum mechanics framework.•The theory is then specialized for modeling hydrogen assisted cracking problems of high strength steel specimens.•A numerical strategy using finite elements and phase field model is proposed and implemented.•The solutions obtained with the phase-field model are validated by comparing them with numerical and experimental results.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2017.11.004</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Brittle fracture ; Brittleness ; COMP-DES-MAT Project ; COMPDESMAT Project ; Continuum mechanics ; Crack propagation ; Deformation effects ; Elastoplasticitat ; Elastoplasticity ; Enginyeria civil ; Field theory ; Finite element method ; Fracture ; Fracture mechanics ; Gradient damage mechanics ; High strength steels ; Hydrogen embrittlement ; Hydrogen-assisted cracking ; Materials i estructures ; Mathematical models ; Migration ; Phase-field ; Time integration ; Àrees temàtiques de la UPC</subject><ispartof>International journal of plasticity, 2018-03, Vol.102, p.16-40</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2018</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-7a6557d792e42e7b2e776e1a4c8956438cf3be82f1260b8471aed4cd4207d49b3</citedby><cites>FETCH-LOGICAL-c422t-7a6557d792e42e7b2e776e1a4c8956438cf3be82f1260b8471aed4cd4207d49b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0749641917304552$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Duda, F.P.</creatorcontrib><creatorcontrib>Ciarbonetti, A.</creatorcontrib><creatorcontrib>Toro, S.</creatorcontrib><creatorcontrib>Huespe, A.E.</creatorcontrib><title>A phase-field model for solute-assisted brittle fracture in elastic-plastic solids</title><title>International journal of plasticity</title><description>A phase-field theory of brittle fracture in elastoplastic solids hosting mobile interstitial solute species is developed in this paper. The theory, which is formulated within the framework of modern continuum mechanics, provides a systematic way to describe the interplay between solute migration and solid deformation and fracture. A specialization of the theory, which accounts for both solute-induced deformation and solute-assisted fracture as well as for their mutual effects on solute migration, is selected for numerical studies. Toward this end, a numerical model based on the finite-element method for spatial discretization and a splitting scheme with sub-stepping for the time integration is proposed. The model is applied to the study of hydrogen-assisted crack propagation of high-strength steel specimens under sustained loads. The solutions obtained are compared with numerical and experimental results reported in the literature. It is shown that the proposed model has the capability to capture important features presented in the studied phenomenon. •A general theory coupling deformation, species migration and fracture in elasto-plastic solids is presented.•The general theory is formulated within a modern continuum mechanics framework.•The theory is then specialized for modeling hydrogen assisted cracking problems of high strength steel specimens.•A numerical strategy using finite elements and phase field model is proposed and implemented.•The solutions obtained with the phase-field model are validated by comparing them with numerical and experimental results.</description><subject>Brittle fracture</subject><subject>Brittleness</subject><subject>COMP-DES-MAT Project</subject><subject>COMPDESMAT Project</subject><subject>Continuum mechanics</subject><subject>Crack propagation</subject><subject>Deformation effects</subject><subject>Elastoplasticitat</subject><subject>Elastoplasticity</subject><subject>Enginyeria civil</subject><subject>Field theory</subject><subject>Finite element method</subject><subject>Fracture</subject><subject>Fracture mechanics</subject><subject>Gradient damage mechanics</subject><subject>High strength steels</subject><subject>Hydrogen embrittlement</subject><subject>Hydrogen-assisted cracking</subject><subject>Materials i estructures</subject><subject>Mathematical models</subject><subject>Migration</subject><subject>Phase-field</subject><subject>Time integration</subject><subject>Àrees temàtiques de la UPC</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kE9LxDAQxYMouK5-Aw8Fz62ZNG3ai7As_oMFQfQc0mSKKd1NTVLBb2-WCt48DMPA-72ZeYRcAy2AQn07FHaYRhUKRkEUAAWl_ISsoBFtzqDip2RFBW_zmkN7Ti5CGCilVVPCirxusulDBcx7i6PJ9s7gmPXOZ8GNc8RchWBDRJN13sY4YtZ7pePsMbOHDNPOaHU-Lf3IWBMuyVmvxoBXv31N3h_u37ZP-e7l8Xm72eWaMxZzoeqqEka0DDlD0aUSNYLiummrmpeN7ssOG9YDq2nXcAEKDdeGMyoMb7tyTWDx1WHW0qNGr1WUTtm_4VhJz2RJmwZoYm4WZvLuc8YQ5eBmf0hnJhmHFBIXZVLxX2fvQvDYy8nbvfLfEqg8Ji4HuSQuj4lLAJkST9jdgmH6-suil0FbPGg0Nh0UpXH2f4Mf-uCLNA</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Duda, F.P.</creator><creator>Ciarbonetti, A.</creator><creator>Toro, S.</creator><creator>Huespe, A.E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>XX2</scope></search><sort><creationdate>201803</creationdate><title>A phase-field model for solute-assisted brittle fracture in elastic-plastic solids</title><author>Duda, F.P. ; Ciarbonetti, A. ; Toro, S. ; Huespe, A.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-7a6557d792e42e7b2e776e1a4c8956438cf3be82f1260b8471aed4cd4207d49b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brittle fracture</topic><topic>Brittleness</topic><topic>COMP-DES-MAT Project</topic><topic>COMPDESMAT Project</topic><topic>Continuum mechanics</topic><topic>Crack propagation</topic><topic>Deformation effects</topic><topic>Elastoplasticitat</topic><topic>Elastoplasticity</topic><topic>Enginyeria civil</topic><topic>Field theory</topic><topic>Finite element method</topic><topic>Fracture</topic><topic>Fracture mechanics</topic><topic>Gradient damage mechanics</topic><topic>High strength steels</topic><topic>Hydrogen embrittlement</topic><topic>Hydrogen-assisted cracking</topic><topic>Materials i estructures</topic><topic>Mathematical models</topic><topic>Migration</topic><topic>Phase-field</topic><topic>Time integration</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duda, F.P.</creatorcontrib><creatorcontrib>Ciarbonetti, A.</creatorcontrib><creatorcontrib>Toro, S.</creatorcontrib><creatorcontrib>Huespe, A.E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Recercat</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duda, F.P.</au><au>Ciarbonetti, A.</au><au>Toro, S.</au><au>Huespe, A.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phase-field model for solute-assisted brittle fracture in elastic-plastic solids</atitle><jtitle>International journal of plasticity</jtitle><date>2018-03</date><risdate>2018</risdate><volume>102</volume><spage>16</spage><epage>40</epage><pages>16-40</pages><issn>0749-6419</issn><eissn>1879-2154</eissn><abstract>A phase-field theory of brittle fracture in elastoplastic solids hosting mobile interstitial solute species is developed in this paper. The theory, which is formulated within the framework of modern continuum mechanics, provides a systematic way to describe the interplay between solute migration and solid deformation and fracture. A specialization of the theory, which accounts for both solute-induced deformation and solute-assisted fracture as well as for their mutual effects on solute migration, is selected for numerical studies. Toward this end, a numerical model based on the finite-element method for spatial discretization and a splitting scheme with sub-stepping for the time integration is proposed. The model is applied to the study of hydrogen-assisted crack propagation of high-strength steel specimens under sustained loads. The solutions obtained are compared with numerical and experimental results reported in the literature. It is shown that the proposed model has the capability to capture important features presented in the studied phenomenon. •A general theory coupling deformation, species migration and fracture in elasto-plastic solids is presented.•The general theory is formulated within a modern continuum mechanics framework.•The theory is then specialized for modeling hydrogen assisted cracking problems of high strength steel specimens.•A numerical strategy using finite elements and phase field model is proposed and implemented.•The solutions obtained with the phase-field model are validated by comparing them with numerical and experimental results.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2017.11.004</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0749-6419
ispartof International journal of plasticity, 2018-03, Vol.102, p.16-40
issn 0749-6419
1879-2154
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_308810
source Recercat; Elsevier ScienceDirect Journals
subjects Brittle fracture
Brittleness
COMP-DES-MAT Project
COMPDESMAT Project
Continuum mechanics
Crack propagation
Deformation effects
Elastoplasticitat
Elastoplasticity
Enginyeria civil
Field theory
Finite element method
Fracture
Fracture mechanics
Gradient damage mechanics
High strength steels
Hydrogen embrittlement
Hydrogen-assisted cracking
Materials i estructures
Mathematical models
Migration
Phase-field
Time integration
Àrees temàtiques de la UPC
title A phase-field model for solute-assisted brittle fracture in elastic-plastic solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phase-field%20model%20for%20solute-assisted%20brittle%20fracture%20in%20elastic-plastic%20solids&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Duda,%20F.P.&rft.date=2018-03&rft.volume=102&rft.spage=16&rft.epage=40&rft.pages=16-40&rft.issn=0749-6419&rft.eissn=1879-2154&rft_id=info:doi/10.1016/j.ijplas.2017.11.004&rft_dat=%3Cproquest_csuc_%3E2041749473%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2041749473&rft_id=info:pmid/&rft_els_id=S0749641917304552&rfr_iscdi=true