Sea Target Detection Using Spaceborne GNSS-R Delay-Doppler Maps: Theory and Experimental Proof of Concept Using TDS-1 Data
This study addresses a novel application of global navigation satellite system-reflectometry (GNSS-R) delay-Doppler maps (DDMs), namely sea target detection. In contrast with other competing remote sensing technologies, such as synthetic aperture radar and optical systems, typically exploited in the...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2017-09, Vol.10 (9), p.4237-4255 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4255 |
---|---|
container_issue | 9 |
container_start_page | 4237 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 10 |
creator | Di Simone, Alessio Park, Hyuk Riccio, Daniele Camps, Adriano |
description | This study addresses a novel application of global navigation satellite system-reflectometry (GNSS-R) delay-Doppler maps (DDMs), namely sea target detection. In contrast with other competing remote sensing technologies, such as synthetic aperture radar and optical systems, typically exploited in the field of sea target detection, GNSS-R systems could be employed as satellite constellations, so as to fulfill the temporal requirements for near real-time ships and sea ice sheets monitoring. In this study, the revisit time offered by GNSS-R systems is quantitatively evaluated by means of a simulation analysis, in which three different realistic GNSS-R missions are simulated and analyzed. Then, a sea target detection algorithm from spaceborne GNSS-R DDMs is described and assessed. The algorithm is based on a sea clutter compensation step and uses an adaptive threshold to take into account spatial variations in the sea background and/or noise statistics. Finally, the sea target detector algorithm is tested and validated for the first time ever using experimental GNSS-R data from the U.K. TechDemoSat-1 dataset. Performance is assessed by providing the receiver operating characteristic curves, and some preliminary experimental results are presented. |
doi_str_mv | 10.1109/JSTARS.2017.2705350 |
format | Article |
fullrecord | <record><control><sourceid>proquest_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_308721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7934406</ieee_id><sourcerecordid>1944402042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-4315e52dbdbc52cf365f48719c1d160f485327baad727161a17e79bf2bd3bced3</originalsourceid><addsrcrecordid>eNpFkVFr2zAQx0VZoVnaT9AXwZ6d6iTZivsWkixd6dZSu89Cls-tS2Z5kgJLP_0UEjrQIR3c74-OHyHXwGYArLy5r-rFczXjDNSMK5aLnJ2RCYccMkjNFzKBUpQZSCYvyNcQ3hkruCrFhHxUaGht_CtGusKINvZuoC-hH15pNRqLjfMD0s2vqsqe08TW7LOVG8ctevrTjOGW1m_o_J6aoaXrvyP6_jcO0Wzpk3euo-ks3WBxjKfQelVlQFcmmkty3pltwKvTPSUv39f18i57eNz8WC4eMivmMmZSQI45b5u2sTm3nSjyTs4VlBZaKFh654KrxphWcQUFGFCoyqbjTSsai62YEjjm2rCz2qNFb03UzvT_m0NxprgWbK44JObbkRm9-7PDEPW72_khfVNDKaVknEmepsQp2bsQPHZ6TOsbv9fA9EGMPorRBzH6JCZR10eqR8RPItlIsYX4ByfniOM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1944402042</pqid></control><display><type>article</type><title>Sea Target Detection Using Spaceborne GNSS-R Delay-Doppler Maps: Theory and Experimental Proof of Concept Using TDS-1 Data</title><source>Recercat</source><creator>Di Simone, Alessio ; Park, Hyuk ; Riccio, Daniele ; Camps, Adriano</creator><creatorcontrib>Di Simone, Alessio ; Park, Hyuk ; Riccio, Daniele ; Camps, Adriano</creatorcontrib><description>This study addresses a novel application of global navigation satellite system-reflectometry (GNSS-R) delay-Doppler maps (DDMs), namely sea target detection. In contrast with other competing remote sensing technologies, such as synthetic aperture radar and optical systems, typically exploited in the field of sea target detection, GNSS-R systems could be employed as satellite constellations, so as to fulfill the temporal requirements for near real-time ships and sea ice sheets monitoring. In this study, the revisit time offered by GNSS-R systems is quantitatively evaluated by means of a simulation analysis, in which three different realistic GNSS-R missions are simulated and analyzed. Then, a sea target detection algorithm from spaceborne GNSS-R DDMs is described and assessed. The algorithm is based on a sea clutter compensation step and uses an adaptive threshold to take into account spatial variations in the sea background and/or noise statistics. Finally, the sea target detector algorithm is tested and validated for the first time ever using experimental GNSS-R data from the U.K. TechDemoSat-1 dataset. Performance is assessed by providing the receiver operating characteristic curves, and some preliminary experimental results are presented.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2017.2705350</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Aparells i instruments ; Artificial satellites ; Background noise ; Clutter ; Computer simulation ; Constant false alarm rate (CFAR) ; Data processing ; Delay ; Detection ; Doppler sonar ; Enginyeria de la telecomunicació ; Equipment and supplies ; Exploitation ; Glaciation ; Global navigation satellite system ; global navigation satellite system-reflectometry (GNSS-R) ; Global Positioning System ; GNSS (Sistema de navegació) ; Ice ; Ice sheets ; Marine vehicles ; Maritime surveillance ; Mathematical models ; Missions ; Monitoring ; Navigation ; Navigation satellites ; Object detection ; Oceanografia ; Oceanography ; Radar ; Radiocomunicació i exploració electromagnètica ; Reflectometry ; Remote sensing ; SAR (radar) ; Satellite constellations ; Satellites ; Satèl·lits artificials ; Satèl·lits i ràdioenllaços ; Sea ice ; Sea state ; Sea target detection ; Ships ; Simulation ; Simulation analysis ; Spatial variations ; Statistical analysis ; Statistical methods ; Surface clutter ; Synthetic aperture radar ; Systems analysis ; Target detection ; Àrees temàtiques de la UPC</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2017-09, Vol.10 (9), p.4237-4255</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-4315e52dbdbc52cf365f48719c1d160f485327baad727161a17e79bf2bd3bced3</citedby><cites>FETCH-LOGICAL-c384t-4315e52dbdbc52cf365f48719c1d160f485327baad727161a17e79bf2bd3bced3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26951</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/308721$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Di Simone, Alessio</creatorcontrib><creatorcontrib>Park, Hyuk</creatorcontrib><creatorcontrib>Riccio, Daniele</creatorcontrib><creatorcontrib>Camps, Adriano</creatorcontrib><title>Sea Target Detection Using Spaceborne GNSS-R Delay-Doppler Maps: Theory and Experimental Proof of Concept Using TDS-1 Data</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>This study addresses a novel application of global navigation satellite system-reflectometry (GNSS-R) delay-Doppler maps (DDMs), namely sea target detection. In contrast with other competing remote sensing technologies, such as synthetic aperture radar and optical systems, typically exploited in the field of sea target detection, GNSS-R systems could be employed as satellite constellations, so as to fulfill the temporal requirements for near real-time ships and sea ice sheets monitoring. In this study, the revisit time offered by GNSS-R systems is quantitatively evaluated by means of a simulation analysis, in which three different realistic GNSS-R missions are simulated and analyzed. Then, a sea target detection algorithm from spaceborne GNSS-R DDMs is described and assessed. The algorithm is based on a sea clutter compensation step and uses an adaptive threshold to take into account spatial variations in the sea background and/or noise statistics. Finally, the sea target detector algorithm is tested and validated for the first time ever using experimental GNSS-R data from the U.K. TechDemoSat-1 dataset. Performance is assessed by providing the receiver operating characteristic curves, and some preliminary experimental results are presented.</description><subject>Algorithms</subject><subject>Aparells i instruments</subject><subject>Artificial satellites</subject><subject>Background noise</subject><subject>Clutter</subject><subject>Computer simulation</subject><subject>Constant false alarm rate (CFAR)</subject><subject>Data processing</subject><subject>Delay</subject><subject>Detection</subject><subject>Doppler sonar</subject><subject>Enginyeria de la telecomunicació</subject><subject>Equipment and supplies</subject><subject>Exploitation</subject><subject>Glaciation</subject><subject>Global navigation satellite system</subject><subject>global navigation satellite system-reflectometry (GNSS-R)</subject><subject>Global Positioning System</subject><subject>GNSS (Sistema de navegació)</subject><subject>Ice</subject><subject>Ice sheets</subject><subject>Marine vehicles</subject><subject>Maritime surveillance</subject><subject>Mathematical models</subject><subject>Missions</subject><subject>Monitoring</subject><subject>Navigation</subject><subject>Navigation satellites</subject><subject>Object detection</subject><subject>Oceanografia</subject><subject>Oceanography</subject><subject>Radar</subject><subject>Radiocomunicació i exploració electromagnètica</subject><subject>Reflectometry</subject><subject>Remote sensing</subject><subject>SAR (radar)</subject><subject>Satellite constellations</subject><subject>Satellites</subject><subject>Satèl·lits artificials</subject><subject>Satèl·lits i ràdioenllaços</subject><subject>Sea ice</subject><subject>Sea state</subject><subject>Sea target detection</subject><subject>Ships</subject><subject>Simulation</subject><subject>Simulation analysis</subject><subject>Spatial variations</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Surface clutter</subject><subject>Synthetic aperture radar</subject><subject>Systems analysis</subject><subject>Target detection</subject><subject>Àrees temàtiques de la UPC</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>XX2</sourceid><recordid>eNpFkVFr2zAQx0VZoVnaT9AXwZ6d6iTZivsWkixd6dZSu89Cls-tS2Z5kgJLP_0UEjrQIR3c74-OHyHXwGYArLy5r-rFczXjDNSMK5aLnJ2RCYccMkjNFzKBUpQZSCYvyNcQ3hkruCrFhHxUaGht_CtGusKINvZuoC-hH15pNRqLjfMD0s2vqsqe08TW7LOVG8ctevrTjOGW1m_o_J6aoaXrvyP6_jcO0Wzpk3euo-ks3WBxjKfQelVlQFcmmkty3pltwKvTPSUv39f18i57eNz8WC4eMivmMmZSQI45b5u2sTm3nSjyTs4VlBZaKFh654KrxphWcQUFGFCoyqbjTSsai62YEjjm2rCz2qNFb03UzvT_m0NxprgWbK44JObbkRm9-7PDEPW72_khfVNDKaVknEmepsQp2bsQPHZ6TOsbv9fA9EGMPorRBzH6JCZR10eqR8RPItlIsYX4ByfniOM</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Di Simone, Alessio</creator><creator>Park, Hyuk</creator><creator>Riccio, Daniele</creator><creator>Camps, Adriano</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>XX2</scope></search><sort><creationdate>20170901</creationdate><title>Sea Target Detection Using Spaceborne GNSS-R Delay-Doppler Maps: Theory and Experimental Proof of Concept Using TDS-1 Data</title><author>Di Simone, Alessio ; Park, Hyuk ; Riccio, Daniele ; Camps, Adriano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-4315e52dbdbc52cf365f48719c1d160f485327baad727161a17e79bf2bd3bced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Aparells i instruments</topic><topic>Artificial satellites</topic><topic>Background noise</topic><topic>Clutter</topic><topic>Computer simulation</topic><topic>Constant false alarm rate (CFAR)</topic><topic>Data processing</topic><topic>Delay</topic><topic>Detection</topic><topic>Doppler sonar</topic><topic>Enginyeria de la telecomunicació</topic><topic>Equipment and supplies</topic><topic>Exploitation</topic><topic>Glaciation</topic><topic>Global navigation satellite system</topic><topic>global navigation satellite system-reflectometry (GNSS-R)</topic><topic>Global Positioning System</topic><topic>GNSS (Sistema de navegació)</topic><topic>Ice</topic><topic>Ice sheets</topic><topic>Marine vehicles</topic><topic>Maritime surveillance</topic><topic>Mathematical models</topic><topic>Missions</topic><topic>Monitoring</topic><topic>Navigation</topic><topic>Navigation satellites</topic><topic>Object detection</topic><topic>Oceanografia</topic><topic>Oceanography</topic><topic>Radar</topic><topic>Radiocomunicació i exploració electromagnètica</topic><topic>Reflectometry</topic><topic>Remote sensing</topic><topic>SAR (radar)</topic><topic>Satellite constellations</topic><topic>Satellites</topic><topic>Satèl·lits artificials</topic><topic>Satèl·lits i ràdioenllaços</topic><topic>Sea ice</topic><topic>Sea state</topic><topic>Sea target detection</topic><topic>Ships</topic><topic>Simulation</topic><topic>Simulation analysis</topic><topic>Spatial variations</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Surface clutter</topic><topic>Synthetic aperture radar</topic><topic>Systems analysis</topic><topic>Target detection</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Simone, Alessio</creatorcontrib><creatorcontrib>Park, Hyuk</creatorcontrib><creatorcontrib>Riccio, Daniele</creatorcontrib><creatorcontrib>Camps, Adriano</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Di Simone, Alessio</au><au>Park, Hyuk</au><au>Riccio, Daniele</au><au>Camps, Adriano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sea Target Detection Using Spaceborne GNSS-R Delay-Doppler Maps: Theory and Experimental Proof of Concept Using TDS-1 Data</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>10</volume><issue>9</issue><spage>4237</spage><epage>4255</epage><pages>4237-4255</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>This study addresses a novel application of global navigation satellite system-reflectometry (GNSS-R) delay-Doppler maps (DDMs), namely sea target detection. In contrast with other competing remote sensing technologies, such as synthetic aperture radar and optical systems, typically exploited in the field of sea target detection, GNSS-R systems could be employed as satellite constellations, so as to fulfill the temporal requirements for near real-time ships and sea ice sheets monitoring. In this study, the revisit time offered by GNSS-R systems is quantitatively evaluated by means of a simulation analysis, in which three different realistic GNSS-R missions are simulated and analyzed. Then, a sea target detection algorithm from spaceborne GNSS-R DDMs is described and assessed. The algorithm is based on a sea clutter compensation step and uses an adaptive threshold to take into account spatial variations in the sea background and/or noise statistics. Finally, the sea target detector algorithm is tested and validated for the first time ever using experimental GNSS-R data from the U.K. TechDemoSat-1 dataset. Performance is assessed by providing the receiver operating characteristic curves, and some preliminary experimental results are presented.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2017.2705350</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2017-09, Vol.10 (9), p.4237-4255 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_308721 |
source | Recercat |
subjects | Algorithms Aparells i instruments Artificial satellites Background noise Clutter Computer simulation Constant false alarm rate (CFAR) Data processing Delay Detection Doppler sonar Enginyeria de la telecomunicació Equipment and supplies Exploitation Glaciation Global navigation satellite system global navigation satellite system-reflectometry (GNSS-R) Global Positioning System GNSS (Sistema de navegació) Ice Ice sheets Marine vehicles Maritime surveillance Mathematical models Missions Monitoring Navigation Navigation satellites Object detection Oceanografia Oceanography Radar Radiocomunicació i exploració electromagnètica Reflectometry Remote sensing SAR (radar) Satellite constellations Satellites Satèl·lits artificials Satèl·lits i ràdioenllaços Sea ice Sea state Sea target detection Ships Simulation Simulation analysis Spatial variations Statistical analysis Statistical methods Surface clutter Synthetic aperture radar Systems analysis Target detection Àrees temàtiques de la UPC |
title | Sea Target Detection Using Spaceborne GNSS-R Delay-Doppler Maps: Theory and Experimental Proof of Concept Using TDS-1 Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sea%20Target%20Detection%20Using%20Spaceborne%20GNSS-R%20Delay-Doppler%20Maps:%20Theory%20and%20Experimental%20Proof%20of%20Concept%20Using%20TDS-1%20Data&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Di%20Simone,%20Alessio&rft.date=2017-09-01&rft.volume=10&rft.issue=9&rft.spage=4237&rft.epage=4255&rft.pages=4237-4255&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2017.2705350&rft_dat=%3Cproquest_XX2%3E1944402042%3C/proquest_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1944402042&rft_id=info:pmid/&rft_ieee_id=7934406&rfr_iscdi=true |