Computational Improvements in Parallelized K-Anonymous Microaggregation of Large Databases

The technical contents of this paper fall within the field of statistical disclosure control (SDC), which concerns the postprocessing of the demographic portion of the statistical results of surveys containing sensitive personal information, in order to effectively safeguard the anonymity of the par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mohamad Mezher, Ahmad, Garcia Alvarez, Alejandro, Rebollo-Monedero, David, Forne, Jordi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue
container_start_page 258
container_title
container_volume
creator Mohamad Mezher, Ahmad
Garcia Alvarez, Alejandro
Rebollo-Monedero, David
Forne, Jordi
description The technical contents of this paper fall within the field of statistical disclosure control (SDC), which concerns the postprocessing of the demographic portion of the statistical results of surveys containing sensitive personal information, in order to effectively safeguard the anonymity of the participating respondents. The concrete purpose of this study is to improve the efficiency of a widely used algorithm for k-anonymous microaggregation, known as maximum distance to average vector (MDAV), to vastly accelerate its execution without affecting its excellent functional performance with respect to competing methods. The improvements put forth in this paper encompass algebraic modifications and the use of the basic linear algebra subprograms (BLAS) library, for the efficient parallel computation of MDAV on CPU.
doi_str_mv 10.1109/ICDCSW.2017.43
format Conference Proceeding
fullrecord <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_303069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7979826</ieee_id><sourcerecordid>oai_recercat_cat_2072_303069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-76cf2a9d98208196b55eb6dbda358e351b6fcf12fab3e6871ae2e579a8f4988b3</originalsourceid><addsrcrecordid>eNpFjktLw0AUhUdBsNZu3biZP5A6j85rWVIfxYqCiuAm3ExuSiTJlJlUqL_eagUXh4-z-A6HkAvOppwzd7XMF_nz21QwbqYzeUQmzliupNVSOKGOyUhIKTKltT4lZyl9MMadc7MRec9Dt9kOMDShh5Yuu00Mn9hhPyTa9PQJIrQtts0XVvQ-m_eh33Vhm-hD42OA9Tri-teloaYriGukCxighITpnJzU0Cac_HFMXm-uX_K7bPV4u8znq8wLbobMaF8LcJWzglnudKkUlroqK5DKolS81LWvuaihlKit4YAClXFg65mztpRjwg-7Pm19EdFj9DAUAZr_8hPBjCgkk0y7vXN5cBpELDax6SDuCuPM_oWW31DnZMY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computational Improvements in Parallelized K-Anonymous Microaggregation of Large Databases</title><source>Recercat</source><creator>Mohamad Mezher, Ahmad ; Garcia Alvarez, Alejandro ; Rebollo-Monedero, David ; Forne, Jordi</creator><creatorcontrib>Mohamad Mezher, Ahmad ; Garcia Alvarez, Alejandro ; Rebollo-Monedero, David ; Forne, Jordi</creatorcontrib><description>The technical contents of this paper fall within the field of statistical disclosure control (SDC), which concerns the postprocessing of the demographic portion of the statistical results of surveys containing sensitive personal information, in order to effectively safeguard the anonymity of the participating respondents. The concrete purpose of this study is to improve the efficiency of a widely used algorithm for k-anonymous microaggregation, known as maximum distance to average vector (MDAV), to vastly accelerate its execution without affecting its excellent functional performance with respect to competing methods. The improvements put forth in this paper encompass algebraic modifications and the use of the basic linear algebra subprograms (BLAS) library, for the efficient parallel computation of MDAV on CPU.</description><identifier>EISSN: 2332-5666</identifier><identifier>EISBN: 9781538632925</identifier><identifier>EISBN: 1538632926</identifier><identifier>DOI: 10.1109/ICDCSW.2017.43</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>algebraic modifications ; Algorithm design and analysis ; Bases de dades ; BLAS library ; C++ languages ; CPU ; Data privacy ; Database management ; Distortion ; Enginyeria de la telecomunicació ; Gestió ; k-Anonymity ; large databases ; Libraries ; Linear algebra ; linear algebra subprograms ; maximum distance to average vector ; MDAV ; Microaggregation ; parallel computation ; Parallelization ; parallelized k-anonymous microaggregation ; Partitioning algorithms ; sensitive personal information ; statistical disclosure control ; Àrees temàtiques de la UPC</subject><ispartof>2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), 2017, p.258-264</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,780,885,26974</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/303069$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mohamad Mezher, Ahmad</creatorcontrib><creatorcontrib>Garcia Alvarez, Alejandro</creatorcontrib><creatorcontrib>Rebollo-Monedero, David</creatorcontrib><creatorcontrib>Forne, Jordi</creatorcontrib><title>Computational Improvements in Parallelized K-Anonymous Microaggregation of Large Databases</title><title>2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW)</title><addtitle>CDCS</addtitle><description>The technical contents of this paper fall within the field of statistical disclosure control (SDC), which concerns the postprocessing of the demographic portion of the statistical results of surveys containing sensitive personal information, in order to effectively safeguard the anonymity of the participating respondents. The concrete purpose of this study is to improve the efficiency of a widely used algorithm for k-anonymous microaggregation, known as maximum distance to average vector (MDAV), to vastly accelerate its execution without affecting its excellent functional performance with respect to competing methods. The improvements put forth in this paper encompass algebraic modifications and the use of the basic linear algebra subprograms (BLAS) library, for the efficient parallel computation of MDAV on CPU.</description><subject>algebraic modifications</subject><subject>Algorithm design and analysis</subject><subject>Bases de dades</subject><subject>BLAS library</subject><subject>C++ languages</subject><subject>CPU</subject><subject>Data privacy</subject><subject>Database management</subject><subject>Distortion</subject><subject>Enginyeria de la telecomunicació</subject><subject>Gestió</subject><subject>k-Anonymity</subject><subject>large databases</subject><subject>Libraries</subject><subject>Linear algebra</subject><subject>linear algebra subprograms</subject><subject>maximum distance to average vector</subject><subject>MDAV</subject><subject>Microaggregation</subject><subject>parallel computation</subject><subject>Parallelization</subject><subject>parallelized k-anonymous microaggregation</subject><subject>Partitioning algorithms</subject><subject>sensitive personal information</subject><subject>statistical disclosure control</subject><subject>Àrees temàtiques de la UPC</subject><issn>2332-5666</issn><isbn>9781538632925</isbn><isbn>1538632926</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>XX2</sourceid><recordid>eNpFjktLw0AUhUdBsNZu3biZP5A6j85rWVIfxYqCiuAm3ExuSiTJlJlUqL_eagUXh4-z-A6HkAvOppwzd7XMF_nz21QwbqYzeUQmzliupNVSOKGOyUhIKTKltT4lZyl9MMadc7MRec9Dt9kOMDShh5Yuu00Mn9hhPyTa9PQJIrQtts0XVvQ-m_eh33Vhm-hD42OA9Tri-teloaYriGukCxighITpnJzU0Cac_HFMXm-uX_K7bPV4u8znq8wLbobMaF8LcJWzglnudKkUlroqK5DKolS81LWvuaihlKit4YAClXFg65mztpRjwg-7Pm19EdFj9DAUAZr_8hPBjCgkk0y7vXN5cBpELDax6SDuCuPM_oWW31DnZMY</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Mohamad Mezher, Ahmad</creator><creator>Garcia Alvarez, Alejandro</creator><creator>Rebollo-Monedero, David</creator><creator>Forne, Jordi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>XX2</scope></search><sort><creationdate>201706</creationdate><title>Computational Improvements in Parallelized K-Anonymous Microaggregation of Large Databases</title><author>Mohamad Mezher, Ahmad ; Garcia Alvarez, Alejandro ; Rebollo-Monedero, David ; Forne, Jordi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-76cf2a9d98208196b55eb6dbda358e351b6fcf12fab3e6871ae2e579a8f4988b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><topic>algebraic modifications</topic><topic>Algorithm design and analysis</topic><topic>Bases de dades</topic><topic>BLAS library</topic><topic>C++ languages</topic><topic>CPU</topic><topic>Data privacy</topic><topic>Database management</topic><topic>Distortion</topic><topic>Enginyeria de la telecomunicació</topic><topic>Gestió</topic><topic>k-Anonymity</topic><topic>large databases</topic><topic>Libraries</topic><topic>Linear algebra</topic><topic>linear algebra subprograms</topic><topic>maximum distance to average vector</topic><topic>MDAV</topic><topic>Microaggregation</topic><topic>parallel computation</topic><topic>Parallelization</topic><topic>parallelized k-anonymous microaggregation</topic><topic>Partitioning algorithms</topic><topic>sensitive personal information</topic><topic>statistical disclosure control</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohamad Mezher, Ahmad</creatorcontrib><creatorcontrib>Garcia Alvarez, Alejandro</creatorcontrib><creatorcontrib>Rebollo-Monedero, David</creatorcontrib><creatorcontrib>Forne, Jordi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohamad Mezher, Ahmad</au><au>Garcia Alvarez, Alejandro</au><au>Rebollo-Monedero, David</au><au>Forne, Jordi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational Improvements in Parallelized K-Anonymous Microaggregation of Large Databases</atitle><btitle>2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW)</btitle><stitle>CDCS</stitle><date>2017-06</date><risdate>2017</risdate><spage>258</spage><epage>264</epage><pages>258-264</pages><eissn>2332-5666</eissn><eisbn>9781538632925</eisbn><eisbn>1538632926</eisbn><coden>IEEPAD</coden><abstract>The technical contents of this paper fall within the field of statistical disclosure control (SDC), which concerns the postprocessing of the demographic portion of the statistical results of surveys containing sensitive personal information, in order to effectively safeguard the anonymity of the participating respondents. The concrete purpose of this study is to improve the efficiency of a widely used algorithm for k-anonymous microaggregation, known as maximum distance to average vector (MDAV), to vastly accelerate its execution without affecting its excellent functional performance with respect to competing methods. The improvements put forth in this paper encompass algebraic modifications and the use of the basic linear algebra subprograms (BLAS) library, for the efficient parallel computation of MDAV on CPU.</abstract><pub>IEEE</pub><doi>10.1109/ICDCSW.2017.43</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2332-5666
ispartof 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), 2017, p.258-264
issn 2332-5666
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_303069
source Recercat
subjects algebraic modifications
Algorithm design and analysis
Bases de dades
BLAS library
C++ languages
CPU
Data privacy
Database management
Distortion
Enginyeria de la telecomunicació
Gestió
k-Anonymity
large databases
Libraries
Linear algebra
linear algebra subprograms
maximum distance to average vector
MDAV
Microaggregation
parallel computation
Parallelization
parallelized k-anonymous microaggregation
Partitioning algorithms
sensitive personal information
statistical disclosure control
Àrees temàtiques de la UPC
title Computational Improvements in Parallelized K-Anonymous Microaggregation of Large Databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20Improvements%20in%20Parallelized%20K-Anonymous%20Microaggregation%20of%20Large%20Databases&rft.btitle=2017%20IEEE%2037th%20International%20Conference%20on%20Distributed%20Computing%20Systems%20Workshops%20(ICDCSW)&rft.au=Mohamad%20Mezher,%20Ahmad&rft.date=2017-06&rft.spage=258&rft.epage=264&rft.pages=258-264&rft.eissn=2332-5666&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDCSW.2017.43&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_303069%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781538632925&rft.eisbn_list=1538632926&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7979826&rfr_iscdi=true