Methods of class field theory to separate logics over finite residue classes and circuit complexity

This is a pre-copyedited, author-produced version of an article accepted for publication in Journal of logic and computation following peer review. Separations among the first-order logic Res(0,+,×) of finite residue classes, its extensions with generalized quantifiers, and in the presence of a buil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arratia Quesada, Argimiro Alejandro, Ortiz, Carlos E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Arratia Quesada, Argimiro Alejandro
Ortiz, Carlos E
description This is a pre-copyedited, author-produced version of an article accepted for publication in Journal of logic and computation following peer review. Separations among the first-order logic Res(0,+,×) of finite residue classes, its extensions with generalized quantifiers, and in the presence of a built-in order are shown in this article, using algebraic methods from class field theory. These methods include classification of spectra of sentences over finite residue classes as systems of congruences, and the study of their h-densities over the set of all prime numbers, for various functions h on the natural numbers. Over ordered structures, the logic of finite residue classes and extensions are known to capture DLOGTIME-uniform circuit complexity classes ranging from AC to TC. Separating these circuit complexity classes is directly related to classifying the h-density of spectra of sentences in the corresponding logics of finite residue classes. General conditions are further shown in this work for a logic over the finite residue classes to have a sentence whose spectrum has no h-density. A corollary of this characterization of spectra of sentences is that in Res(0,+,×,
doi_str_mv 10.1093/logcom/exx007
format Article
fullrecord <record><control><sourceid>csuc</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_302636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_302636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-a200b637f9b22a237cf9399189102afadf58e5ccae93b82df2e667294b85066d3</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxXNQsFaP3vMF1k6SbrI5SvEfVLwoeCvZycRG1qYkqbTf3pUWPDyGefzmDTzGbgTcCrBqNqRPTN8z2u8BzBmbgG3bxlj5ccEuS_kCAKnFfMLwheo6-cJT4Di4UniINHhe15TygdfEC21ddpX4GBlxBH8oj9AmjlamEv2OjpdUuNt4jjHjLlY-vt8OtI_1cMXOgxsKXZ_mlL0_3L8tnprl6-Pz4m7ZoLCmNk4C9FqZYHspnVQGg1XWis4KkC44H9qOWkRHVvWd9EGS1kbaed-1oLVXUyaOuVh2uMqElNHVVXLxf_mTBCNXaixAafULhShdVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Methods of class field theory to separate logics over finite residue classes and circuit complexity</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Recercat</source><creator>Arratia Quesada, Argimiro Alejandro ; Ortiz, Carlos E</creator><creatorcontrib>Arratia Quesada, Argimiro Alejandro ; Ortiz, Carlos E</creatorcontrib><description>This is a pre-copyedited, author-produced version of an article accepted for publication in Journal of logic and computation following peer review. Separations among the first-order logic Res(0,+,×) of finite residue classes, its extensions with generalized quantifiers, and in the presence of a built-in order are shown in this article, using algebraic methods from class field theory. These methods include classification of spectra of sentences over finite residue classes as systems of congruences, and the study of their h-densities over the set of all prime numbers, for various functions h on the natural numbers. Over ordered structures, the logic of finite residue classes and extensions are known to capture DLOGTIME-uniform circuit complexity classes ranging from AC to TC. Separating these circuit complexity classes is directly related to classifying the h-density of spectra of sentences in the corresponding logics of finite residue classes. General conditions are further shown in this work for a logic over the finite residue classes to have a sentence whose spectrum has no h-density. A corollary of this characterization of spectra of sentences is that in Res(0,+,×,&lt;)+M, the logic of finite residue classes with built-in order and extended with the majority quantifier M, there are sentences whose spectrum have no exponential density. Peer Reviewed</description><identifier>ISSN: 0955-792X</identifier><identifier>DOI: 10.1093/logcom/exx007</identifier><language>eng</language><subject>Circuit complexity ; Complexitat computacional ; Computational complexity ; Congruence classes ; Density ; Finite model theory ; Informàtica ; Logic, Symbolic and mathematical ; Lògica matemàtica ; Prime spectra ; Àrees temàtiques de la UPC</subject><creationdate>2017-10</creationdate><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,784,885,26974,27925</link.rule.ids></links><search><creatorcontrib>Arratia Quesada, Argimiro Alejandro</creatorcontrib><creatorcontrib>Ortiz, Carlos E</creatorcontrib><title>Methods of class field theory to separate logics over finite residue classes and circuit complexity</title><description>This is a pre-copyedited, author-produced version of an article accepted for publication in Journal of logic and computation following peer review. Separations among the first-order logic Res(0,+,×) of finite residue classes, its extensions with generalized quantifiers, and in the presence of a built-in order are shown in this article, using algebraic methods from class field theory. These methods include classification of spectra of sentences over finite residue classes as systems of congruences, and the study of their h-densities over the set of all prime numbers, for various functions h on the natural numbers. Over ordered structures, the logic of finite residue classes and extensions are known to capture DLOGTIME-uniform circuit complexity classes ranging from AC to TC. Separating these circuit complexity classes is directly related to classifying the h-density of spectra of sentences in the corresponding logics of finite residue classes. General conditions are further shown in this work for a logic over the finite residue classes to have a sentence whose spectrum has no h-density. A corollary of this characterization of spectra of sentences is that in Res(0,+,×,&lt;)+M, the logic of finite residue classes with built-in order and extended with the majority quantifier M, there are sentences whose spectrum have no exponential density. Peer Reviewed</description><subject>Circuit complexity</subject><subject>Complexitat computacional</subject><subject>Computational complexity</subject><subject>Congruence classes</subject><subject>Density</subject><subject>Finite model theory</subject><subject>Informàtica</subject><subject>Logic, Symbolic and mathematical</subject><subject>Lògica matemàtica</subject><subject>Prime spectra</subject><subject>Àrees temàtiques de la UPC</subject><issn>0955-792X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNpFkE9LAzEQxXNQsFaP3vMF1k6SbrI5SvEfVLwoeCvZycRG1qYkqbTf3pUWPDyGefzmDTzGbgTcCrBqNqRPTN8z2u8BzBmbgG3bxlj5ccEuS_kCAKnFfMLwheo6-cJT4Di4UniINHhe15TygdfEC21ddpX4GBlxBH8oj9AmjlamEv2OjpdUuNt4jjHjLlY-vt8OtI_1cMXOgxsKXZ_mlL0_3L8tnprl6-Pz4m7ZoLCmNk4C9FqZYHspnVQGg1XWis4KkC44H9qOWkRHVvWd9EGS1kbaed-1oLVXUyaOuVh2uMqElNHVVXLxf_mTBCNXaixAafULhShdVg</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Arratia Quesada, Argimiro Alejandro</creator><creator>Ortiz, Carlos E</creator><scope>XX2</scope></search><sort><creationdate>20171001</creationdate><title>Methods of class field theory to separate logics over finite residue classes and circuit complexity</title><author>Arratia Quesada, Argimiro Alejandro ; Ortiz, Carlos E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-a200b637f9b22a237cf9399189102afadf58e5ccae93b82df2e667294b85066d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Circuit complexity</topic><topic>Complexitat computacional</topic><topic>Computational complexity</topic><topic>Congruence classes</topic><topic>Density</topic><topic>Finite model theory</topic><topic>Informàtica</topic><topic>Logic, Symbolic and mathematical</topic><topic>Lògica matemàtica</topic><topic>Prime spectra</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arratia Quesada, Argimiro Alejandro</creatorcontrib><creatorcontrib>Ortiz, Carlos E</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arratia Quesada, Argimiro Alejandro</au><au>Ortiz, Carlos E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods of class field theory to separate logics over finite residue classes and circuit complexity</atitle><date>2017-10-01</date><risdate>2017</risdate><issn>0955-792X</issn><abstract>This is a pre-copyedited, author-produced version of an article accepted for publication in Journal of logic and computation following peer review. Separations among the first-order logic Res(0,+,×) of finite residue classes, its extensions with generalized quantifiers, and in the presence of a built-in order are shown in this article, using algebraic methods from class field theory. These methods include classification of spectra of sentences over finite residue classes as systems of congruences, and the study of their h-densities over the set of all prime numbers, for various functions h on the natural numbers. Over ordered structures, the logic of finite residue classes and extensions are known to capture DLOGTIME-uniform circuit complexity classes ranging from AC to TC. Separating these circuit complexity classes is directly related to classifying the h-density of spectra of sentences in the corresponding logics of finite residue classes. General conditions are further shown in this work for a logic over the finite residue classes to have a sentence whose spectrum has no h-density. A corollary of this characterization of spectra of sentences is that in Res(0,+,×,&lt;)+M, the logic of finite residue classes with built-in order and extended with the majority quantifier M, there are sentences whose spectrum have no exponential density. Peer Reviewed</abstract><doi>10.1093/logcom/exx007</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0955-792X
ispartof
issn 0955-792X
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_302636
source Oxford University Press Journals All Titles (1996-Current); Recercat
subjects Circuit complexity
Complexitat computacional
Computational complexity
Congruence classes
Density
Finite model theory
Informàtica
Logic, Symbolic and mathematical
Lògica matemàtica
Prime spectra
Àrees temàtiques de la UPC
title Methods of class field theory to separate logics over finite residue classes and circuit complexity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20of%20class%20field%20theory%20to%20separate%20logics%20over%20finite%20residue%20classes%20and%20circuit%20complexity&rft.au=Arratia%20Quesada,%20Argimiro%20Alejandro&rft.date=2017-10-01&rft.issn=0955-792X&rft_id=info:doi/10.1093/logcom/exx007&rft_dat=%3Ccsuc%3Eoai_recercat_cat_2072_302636%3C/csuc%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true