On Sets Defining Few Ordinary Planes
Let S be a set of n points in real three-dimensional space, no three collinear and not all co-planar. We prove that if the number of planes incident with exactly three points of S is less than K n 2 for some K = o ( n 1 / 7 ) then, for n sufficiently large, all but at most O ( K ) points of S are co...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2018-07, Vol.60 (1), p.220-253 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | 1 |
container_start_page | 220 |
container_title | Discrete & computational geometry |
container_volume | 60 |
creator | Ball, Simeon |
description | Let
S
be a set of
n
points in real three-dimensional space, no three collinear and not all co-planar. We prove that if the number of planes incident with exactly three points of
S
is less than
K
n
2
for some
K
=
o
(
n
1
/
7
)
then, for
n
sufficiently large, all but at most
O
(
K
) points of
S
are contained in the intersection of two quadrics. Furthermore, we prove that there is a constant
c
such that if the number of planes incident with exactly three points of
S
is less than
1
2
n
2
-
c
n
then, for
n
sufficiently large,
S
is either a regular prism, a regular anti-prism, a regular prism with a point removed or a regular anti-prism with a point removed. As a corollary to the main result, we deduce the following theorem. Let
S
be a set of
n
points in the real plane. If the number of circles incident with exactly three points of
S
is less than
K
n
2
for some
K
=
o
(
n
1
/
7
)
then, for
n
sufficiently large, all but at most
O
(
K
) points of
S
are contained in a curve of degree at most four. |
doi_str_mv | 10.1007/s00454-017-9935-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_302322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2046471928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e485da739ad7d986aff0b7aa217570a7e654ee0ec7acbc6532906319dad144473</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCXqOTf5vNUapVoVBBPYc0O1u21GxNtojf3iwr1IuHYRjm_R4zj5BLBjcMQN8mAKkkBaapMUJRfkQmTApOQUp5TCZ5YagSujwlZyltIMsNVBNyvQzFK_apuMemDW1YF3P8KpaxboOL38XL1gVM5-SkcduEF799St7nD2-zJ7pYPj7P7hbUC1X1FGWlaqeFcbWuTVW6poGVdo4zrTQ4jaWSiIBeO7_ypRLcQCmYqV3N8pVaTAkbfX3aexvRY_Sut51rD8NQHDS3ArjgPDNXI7OL3eceU2833T6GfGaWyVJqZnj1xzl2KUVs7C62H_lDy8AOAdoxQJtzskOAdnDmI5OyNqwxHpz_h34AgypwSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046471928</pqid></control><display><type>article</type><title>On Sets Defining Few Ordinary Planes</title><source>Recercat</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ball, Simeon</creator><creatorcontrib>Ball, Simeon</creatorcontrib><description>Let
S
be a set of
n
points in real three-dimensional space, no three collinear and not all co-planar. We prove that if the number of planes incident with exactly three points of
S
is less than
K
n
2
for some
K
=
o
(
n
1
/
7
)
then, for
n
sufficiently large, all but at most
O
(
K
) points of
S
are contained in the intersection of two quadrics. Furthermore, we prove that there is a constant
c
such that if the number of planes incident with exactly three points of
S
is less than
1
2
n
2
-
c
n
then, for
n
sufficiently large,
S
is either a regular prism, a regular anti-prism, a regular prism with a point removed or a regular anti-prism with a point removed. As a corollary to the main result, we deduce the following theorem. Let
S
be a set of
n
points in the real plane. If the number of circles incident with exactly three points of
S
is less than
K
n
2
for some
K
=
o
(
n
1
/
7
)
then, for
n
sufficiently large, all but at most
O
(
K
) points of
S
are contained in a curve of degree at most four.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-017-9935-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>51 Geometry ; 51M Real and complex geometry ; Classificació AMS ; Combinatorics ; Computational Mathematics and Numerical Analysis ; Decision trees ; Eight associated points theorem ; Geometria ; Geometria algebraica ; Geometry, Algebraic ; Green–Tao ; Matemàtiques i estadística ; Mathematics ; Mathematics and Statistics ; Ordinary planes ; Planes ; Sylvester–Gallai ; Àrees temàtiques de la UPC</subject><ispartof>Discrete & computational geometry, 2018-07, Vol.60 (1), p.220-253</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Discrete & Computational Geometry is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e485da739ad7d986aff0b7aa217570a7e654ee0ec7acbc6532906319dad144473</citedby><cites>FETCH-LOGICAL-c358t-e485da739ad7d986aff0b7aa217570a7e654ee0ec7acbc6532906319dad144473</cites><orcidid>0000-0003-4845-2084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-017-9935-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-017-9935-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,26974,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ball, Simeon</creatorcontrib><title>On Sets Defining Few Ordinary Planes</title><title>Discrete & computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>Let
S
be a set of
n
points in real three-dimensional space, no three collinear and not all co-planar. We prove that if the number of planes incident with exactly three points of
S
is less than
K
n
2
for some
K
=
o
(
n
1
/
7
)
then, for
n
sufficiently large, all but at most
O
(
K
) points of
S
are contained in the intersection of two quadrics. Furthermore, we prove that there is a constant
c
such that if the number of planes incident with exactly three points of
S
is less than
1
2
n
2
-
c
n
then, for
n
sufficiently large,
S
is either a regular prism, a regular anti-prism, a regular prism with a point removed or a regular anti-prism with a point removed. As a corollary to the main result, we deduce the following theorem. Let
S
be a set of
n
points in the real plane. If the number of circles incident with exactly three points of
S
is less than
K
n
2
for some
K
=
o
(
n
1
/
7
)
then, for
n
sufficiently large, all but at most
O
(
K
) points of
S
are contained in a curve of degree at most four.</description><subject>51 Geometry</subject><subject>51M Real and complex geometry</subject><subject>Classificació AMS</subject><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Decision trees</subject><subject>Eight associated points theorem</subject><subject>Geometria</subject><subject>Geometria algebraica</subject><subject>Geometry, Algebraic</subject><subject>Green–Tao</subject><subject>Matemàtiques i estadística</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary planes</subject><subject>Planes</subject><subject>Sylvester–Gallai</subject><subject>Àrees temàtiques de la UPC</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>XX2</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuCXqOTf5vNUapVoVBBPYc0O1u21GxNtojf3iwr1IuHYRjm_R4zj5BLBjcMQN8mAKkkBaapMUJRfkQmTApOQUp5TCZ5YagSujwlZyltIMsNVBNyvQzFK_apuMemDW1YF3P8KpaxboOL38XL1gVM5-SkcduEF799St7nD2-zJ7pYPj7P7hbUC1X1FGWlaqeFcbWuTVW6poGVdo4zrTQ4jaWSiIBeO7_ypRLcQCmYqV3N8pVaTAkbfX3aexvRY_Sut51rD8NQHDS3ArjgPDNXI7OL3eceU2833T6GfGaWyVJqZnj1xzl2KUVs7C62H_lDy8AOAdoxQJtzskOAdnDmI5OyNqwxHpz_h34AgypwSQ</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Ball, Simeon</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0003-4845-2084</orcidid></search><sort><creationdate>20180701</creationdate><title>On Sets Defining Few Ordinary Planes</title><author>Ball, Simeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e485da739ad7d986aff0b7aa217570a7e654ee0ec7acbc6532906319dad144473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>51 Geometry</topic><topic>51M Real and complex geometry</topic><topic>Classificació AMS</topic><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Decision trees</topic><topic>Eight associated points theorem</topic><topic>Geometria</topic><topic>Geometria algebraica</topic><topic>Geometry, Algebraic</topic><topic>Green–Tao</topic><topic>Matemàtiques i estadística</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary planes</topic><topic>Planes</topic><topic>Sylvester–Gallai</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ball, Simeon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Recercat</collection><jtitle>Discrete & computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ball, Simeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Sets Defining Few Ordinary Planes</atitle><jtitle>Discrete & computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>60</volume><issue>1</issue><spage>220</spage><epage>253</epage><pages>220-253</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><abstract>Let
S
be a set of
n
points in real three-dimensional space, no three collinear and not all co-planar. We prove that if the number of planes incident with exactly three points of
S
is less than
K
n
2
for some
K
=
o
(
n
1
/
7
)
then, for
n
sufficiently large, all but at most
O
(
K
) points of
S
are contained in the intersection of two quadrics. Furthermore, we prove that there is a constant
c
such that if the number of planes incident with exactly three points of
S
is less than
1
2
n
2
-
c
n
then, for
n
sufficiently large,
S
is either a regular prism, a regular anti-prism, a regular prism with a point removed or a regular anti-prism with a point removed. As a corollary to the main result, we deduce the following theorem. Let
S
be a set of
n
points in the real plane. If the number of circles incident with exactly three points of
S
is less than
K
n
2
for some
K
=
o
(
n
1
/
7
)
then, for
n
sufficiently large, all but at most
O
(
K
) points of
S
are contained in a curve of degree at most four.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-017-9935-2</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-4845-2084</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-5376 |
ispartof | Discrete & computational geometry, 2018-07, Vol.60 (1), p.220-253 |
issn | 0179-5376 1432-0444 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_302322 |
source | Recercat; SpringerLink Journals - AutoHoldings |
subjects | 51 Geometry 51M Real and complex geometry Classificació AMS Combinatorics Computational Mathematics and Numerical Analysis Decision trees Eight associated points theorem Geometria Geometria algebraica Geometry, Algebraic Green–Tao Matemàtiques i estadística Mathematics Mathematics and Statistics Ordinary planes Planes Sylvester–Gallai Àrees temàtiques de la UPC |
title | On Sets Defining Few Ordinary Planes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Sets%20Defining%20Few%20Ordinary%20Planes&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Ball,%20Simeon&rft.date=2018-07-01&rft.volume=60&rft.issue=1&rft.spage=220&rft.epage=253&rft.pages=220-253&rft.issn=0179-5376&rft.eissn=1432-0444&rft_id=info:doi/10.1007/s00454-017-9935-2&rft_dat=%3Cproquest_csuc_%3E2046471928%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2046471928&rft_id=info:pmid/&rfr_iscdi=true |