An approach to verification and validation of MHD codes for fusion applications
•Review of status of MHD codes for fusion applications.•Selection of five benchmark problems.•Guidance for verification and validation of MHD codes for fusion applications. We propose a new activity on verification and validation (V&V) of MHD codes presently employed by the fusion community as a...
Gespeichert in:
Veröffentlicht in: | Fusion engineering and design 2015-11, Vol.100, p.65-72 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | |
container_start_page | 65 |
container_title | Fusion engineering and design |
container_volume | 100 |
creator | Smolentsev, S. Badia, S. Bhattacharyay, R. Bühler, L. Chen, L. Huang, Q. Jin, H.-G. Krasnov, D. Lee, D.-W. de les Valls, E. Mas Mistrangelo, C. Munipalli, R. Ni, M.-J. Pashkevich, D. Patel, A. Pulugundla, G. Satyamurthy, P. Snegirev, A. Sviridov, V. Swain, P. Zhou, T. Zikanov, O. |
description | •Review of status of MHD codes for fusion applications.•Selection of five benchmark problems.•Guidance for verification and validation of MHD codes for fusion applications.
We propose a new activity on verification and validation (V&V) of MHD codes presently employed by the fusion community as a predictive capability tool for liquid metal cooling applications, such as liquid metal blankets. The important steps in the development of MHD codes starting from the 1970s are outlined first and then basic MHD codes, which are currently in use by designers of liquid breeder blankets, are reviewed. A benchmark database of five problems has been proposed to cover a wide range of MHD flows from laminar fully developed to turbulent flows, which are of interest for fusion applications: (A) 2D fully developed laminar steady MHD flow, (B) 3D laminar, steady developing MHD flow in a non-uniform magnetic field, (C) quasi-two-dimensional MHD turbulent flow, (D) 3D turbulent MHD flow, and (E) MHD flow with heat transfer (buoyant convection). Finally, we introduce important details of the proposed activities, such as basic V&V rules and schedule. The main goal of the present paper is to help in establishing an efficient V&V framework and to initiate benchmarking among interested parties. The comparison results computed by the codes against analytical solutions and trusted experimental and numerical data as well as code-to-code comparisons will be presented and analyzed in companion paper/papers. |
doi_str_mv | 10.1016/j.fusengdes.2014.04.049 |
format | Article |
fullrecord | <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_302155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0920379614003263</els_id><sourcerecordid>oai_recercat_cat_2072_302155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-eef0a9f17a3e475ef2472cd1a702b30055612487519c971051d9ecbe38b133b33</originalsourceid><addsrcrecordid>eNqFkN1KAzEQhYMoWKvP4L7A1plkd9NclvpTodIbvQ5pdqIpdbMkbcG3N2uLXgonDEPmm5Mcxm4RJgjY3G0mbp-oe28pTThgNYFB6oyNcCpFKVE152wEikMppGou2VVKGwCUWSO2mnWF6fsYjP0odqE4UPTOW7PzIV90bXEwW98e2-CKl8V9YUO2KlyIRTb-Gev77QlJ1-zCmW2im1Mds7fHh9f5olyunp7ns2Vp64rvSiIHRjmURlAla3K8kty2aCTwtQCo6wZ5NZU1KqskQo2tIrsmMV2jEGshxgyPe23aWx3JUswv0MH4v2Y4HCTXAjjWdWbkiYkhpUhO99F_mvilEfSQpd7o3yz1kKWGQSqTsyNJ-UsHT1En66mz1PrsttNt8P_u-AYqg4Fz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An approach to verification and validation of MHD codes for fusion applications</title><source>Elsevier ScienceDirect Journals Complete</source><source>Recercat</source><creator>Smolentsev, S. ; Badia, S. ; Bhattacharyay, R. ; Bühler, L. ; Chen, L. ; Huang, Q. ; Jin, H.-G. ; Krasnov, D. ; Lee, D.-W. ; de les Valls, E. Mas ; Mistrangelo, C. ; Munipalli, R. ; Ni, M.-J. ; Pashkevich, D. ; Patel, A. ; Pulugundla, G. ; Satyamurthy, P. ; Snegirev, A. ; Sviridov, V. ; Swain, P. ; Zhou, T. ; Zikanov, O.</creator><creatorcontrib>Smolentsev, S. ; Badia, S. ; Bhattacharyay, R. ; Bühler, L. ; Chen, L. ; Huang, Q. ; Jin, H.-G. ; Krasnov, D. ; Lee, D.-W. ; de les Valls, E. Mas ; Mistrangelo, C. ; Munipalli, R. ; Ni, M.-J. ; Pashkevich, D. ; Patel, A. ; Pulugundla, G. ; Satyamurthy, P. ; Snegirev, A. ; Sviridov, V. ; Swain, P. ; Zhou, T. ; Zikanov, O.</creatorcontrib><description>•Review of status of MHD codes for fusion applications.•Selection of five benchmark problems.•Guidance for verification and validation of MHD codes for fusion applications.
We propose a new activity on verification and validation (V&V) of MHD codes presently employed by the fusion community as a predictive capability tool for liquid metal cooling applications, such as liquid metal blankets. The important steps in the development of MHD codes starting from the 1970s are outlined first and then basic MHD codes, which are currently in use by designers of liquid breeder blankets, are reviewed. A benchmark database of five problems has been proposed to cover a wide range of MHD flows from laminar fully developed to turbulent flows, which are of interest for fusion applications: (A) 2D fully developed laminar steady MHD flow, (B) 3D laminar, steady developing MHD flow in a non-uniform magnetic field, (C) quasi-two-dimensional MHD turbulent flow, (D) 3D turbulent MHD flow, and (E) MHD flow with heat transfer (buoyant convection). Finally, we introduce important details of the proposed activities, such as basic V&V rules and schedule. The main goal of the present paper is to help in establishing an efficient V&V framework and to initiate benchmarking among interested parties. The comparison results computed by the codes against analytical solutions and trusted experimental and numerical data as well as code-to-code comparisons will be presented and analyzed in companion paper/papers.</description><identifier>ISSN: 0920-3796</identifier><identifier>EISSN: 1873-7196</identifier><identifier>DOI: 10.1016/j.fusengdes.2014.04.049</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Blanket ; Computer code ; Física ; Física de fluids ; Liquid metal magnetohydrodynamics ; Magnetohidrodinàmica ; Magnetohydrodynamics ; Àrees temàtiques de la UPC</subject><ispartof>Fusion engineering and design, 2015-11, Vol.100, p.65-72</ispartof><rights>2014 Elsevier B.V.</rights><rights>info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-eef0a9f17a3e475ef2472cd1a702b30055612487519c971051d9ecbe38b133b33</citedby><cites>FETCH-LOGICAL-c542t-eef0a9f17a3e475ef2472cd1a702b30055612487519c971051d9ecbe38b133b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0920379614003263$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Smolentsev, S.</creatorcontrib><creatorcontrib>Badia, S.</creatorcontrib><creatorcontrib>Bhattacharyay, R.</creatorcontrib><creatorcontrib>Bühler, L.</creatorcontrib><creatorcontrib>Chen, L.</creatorcontrib><creatorcontrib>Huang, Q.</creatorcontrib><creatorcontrib>Jin, H.-G.</creatorcontrib><creatorcontrib>Krasnov, D.</creatorcontrib><creatorcontrib>Lee, D.-W.</creatorcontrib><creatorcontrib>de les Valls, E. Mas</creatorcontrib><creatorcontrib>Mistrangelo, C.</creatorcontrib><creatorcontrib>Munipalli, R.</creatorcontrib><creatorcontrib>Ni, M.-J.</creatorcontrib><creatorcontrib>Pashkevich, D.</creatorcontrib><creatorcontrib>Patel, A.</creatorcontrib><creatorcontrib>Pulugundla, G.</creatorcontrib><creatorcontrib>Satyamurthy, P.</creatorcontrib><creatorcontrib>Snegirev, A.</creatorcontrib><creatorcontrib>Sviridov, V.</creatorcontrib><creatorcontrib>Swain, P.</creatorcontrib><creatorcontrib>Zhou, T.</creatorcontrib><creatorcontrib>Zikanov, O.</creatorcontrib><title>An approach to verification and validation of MHD codes for fusion applications</title><title>Fusion engineering and design</title><description>•Review of status of MHD codes for fusion applications.•Selection of five benchmark problems.•Guidance for verification and validation of MHD codes for fusion applications.
We propose a new activity on verification and validation (V&V) of MHD codes presently employed by the fusion community as a predictive capability tool for liquid metal cooling applications, such as liquid metal blankets. The important steps in the development of MHD codes starting from the 1970s are outlined first and then basic MHD codes, which are currently in use by designers of liquid breeder blankets, are reviewed. A benchmark database of five problems has been proposed to cover a wide range of MHD flows from laminar fully developed to turbulent flows, which are of interest for fusion applications: (A) 2D fully developed laminar steady MHD flow, (B) 3D laminar, steady developing MHD flow in a non-uniform magnetic field, (C) quasi-two-dimensional MHD turbulent flow, (D) 3D turbulent MHD flow, and (E) MHD flow with heat transfer (buoyant convection). Finally, we introduce important details of the proposed activities, such as basic V&V rules and schedule. The main goal of the present paper is to help in establishing an efficient V&V framework and to initiate benchmarking among interested parties. The comparison results computed by the codes against analytical solutions and trusted experimental and numerical data as well as code-to-code comparisons will be presented and analyzed in companion paper/papers.</description><subject>Blanket</subject><subject>Computer code</subject><subject>Física</subject><subject>Física de fluids</subject><subject>Liquid metal magnetohydrodynamics</subject><subject>Magnetohidrodinàmica</subject><subject>Magnetohydrodynamics</subject><subject>Àrees temàtiques de la UPC</subject><issn>0920-3796</issn><issn>1873-7196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkN1KAzEQhYMoWKvP4L7A1plkd9NclvpTodIbvQ5pdqIpdbMkbcG3N2uLXgonDEPmm5Mcxm4RJgjY3G0mbp-oe28pTThgNYFB6oyNcCpFKVE152wEikMppGou2VVKGwCUWSO2mnWF6fsYjP0odqE4UPTOW7PzIV90bXEwW98e2-CKl8V9YUO2KlyIRTb-Gev77QlJ1-zCmW2im1Mds7fHh9f5olyunp7ns2Vp64rvSiIHRjmURlAla3K8kty2aCTwtQCo6wZ5NZU1KqskQo2tIrsmMV2jEGshxgyPe23aWx3JUswv0MH4v2Y4HCTXAjjWdWbkiYkhpUhO99F_mvilEfSQpd7o3yz1kKWGQSqTsyNJ-UsHT1En66mz1PrsttNt8P_u-AYqg4Fz</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Smolentsev, S.</creator><creator>Badia, S.</creator><creator>Bhattacharyay, R.</creator><creator>Bühler, L.</creator><creator>Chen, L.</creator><creator>Huang, Q.</creator><creator>Jin, H.-G.</creator><creator>Krasnov, D.</creator><creator>Lee, D.-W.</creator><creator>de les Valls, E. Mas</creator><creator>Mistrangelo, C.</creator><creator>Munipalli, R.</creator><creator>Ni, M.-J.</creator><creator>Pashkevich, D.</creator><creator>Patel, A.</creator><creator>Pulugundla, G.</creator><creator>Satyamurthy, P.</creator><creator>Snegirev, A.</creator><creator>Sviridov, V.</creator><creator>Swain, P.</creator><creator>Zhou, T.</creator><creator>Zikanov, O.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20151101</creationdate><title>An approach to verification and validation of MHD codes for fusion applications</title><author>Smolentsev, S. ; Badia, S. ; Bhattacharyay, R. ; Bühler, L. ; Chen, L. ; Huang, Q. ; Jin, H.-G. ; Krasnov, D. ; Lee, D.-W. ; de les Valls, E. Mas ; Mistrangelo, C. ; Munipalli, R. ; Ni, M.-J. ; Pashkevich, D. ; Patel, A. ; Pulugundla, G. ; Satyamurthy, P. ; Snegirev, A. ; Sviridov, V. ; Swain, P. ; Zhou, T. ; Zikanov, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-eef0a9f17a3e475ef2472cd1a702b30055612487519c971051d9ecbe38b133b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Blanket</topic><topic>Computer code</topic><topic>Física</topic><topic>Física de fluids</topic><topic>Liquid metal magnetohydrodynamics</topic><topic>Magnetohidrodinàmica</topic><topic>Magnetohydrodynamics</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smolentsev, S.</creatorcontrib><creatorcontrib>Badia, S.</creatorcontrib><creatorcontrib>Bhattacharyay, R.</creatorcontrib><creatorcontrib>Bühler, L.</creatorcontrib><creatorcontrib>Chen, L.</creatorcontrib><creatorcontrib>Huang, Q.</creatorcontrib><creatorcontrib>Jin, H.-G.</creatorcontrib><creatorcontrib>Krasnov, D.</creatorcontrib><creatorcontrib>Lee, D.-W.</creatorcontrib><creatorcontrib>de les Valls, E. Mas</creatorcontrib><creatorcontrib>Mistrangelo, C.</creatorcontrib><creatorcontrib>Munipalli, R.</creatorcontrib><creatorcontrib>Ni, M.-J.</creatorcontrib><creatorcontrib>Pashkevich, D.</creatorcontrib><creatorcontrib>Patel, A.</creatorcontrib><creatorcontrib>Pulugundla, G.</creatorcontrib><creatorcontrib>Satyamurthy, P.</creatorcontrib><creatorcontrib>Snegirev, A.</creatorcontrib><creatorcontrib>Sviridov, V.</creatorcontrib><creatorcontrib>Swain, P.</creatorcontrib><creatorcontrib>Zhou, T.</creatorcontrib><creatorcontrib>Zikanov, O.</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Fusion engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smolentsev, S.</au><au>Badia, S.</au><au>Bhattacharyay, R.</au><au>Bühler, L.</au><au>Chen, L.</au><au>Huang, Q.</au><au>Jin, H.-G.</au><au>Krasnov, D.</au><au>Lee, D.-W.</au><au>de les Valls, E. Mas</au><au>Mistrangelo, C.</au><au>Munipalli, R.</au><au>Ni, M.-J.</au><au>Pashkevich, D.</au><au>Patel, A.</au><au>Pulugundla, G.</au><au>Satyamurthy, P.</au><au>Snegirev, A.</au><au>Sviridov, V.</au><au>Swain, P.</au><au>Zhou, T.</au><au>Zikanov, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An approach to verification and validation of MHD codes for fusion applications</atitle><jtitle>Fusion engineering and design</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>100</volume><spage>65</spage><epage>72</epage><pages>65-72</pages><issn>0920-3796</issn><eissn>1873-7196</eissn><abstract>•Review of status of MHD codes for fusion applications.•Selection of five benchmark problems.•Guidance for verification and validation of MHD codes for fusion applications.
We propose a new activity on verification and validation (V&V) of MHD codes presently employed by the fusion community as a predictive capability tool for liquid metal cooling applications, such as liquid metal blankets. The important steps in the development of MHD codes starting from the 1970s are outlined first and then basic MHD codes, which are currently in use by designers of liquid breeder blankets, are reviewed. A benchmark database of five problems has been proposed to cover a wide range of MHD flows from laminar fully developed to turbulent flows, which are of interest for fusion applications: (A) 2D fully developed laminar steady MHD flow, (B) 3D laminar, steady developing MHD flow in a non-uniform magnetic field, (C) quasi-two-dimensional MHD turbulent flow, (D) 3D turbulent MHD flow, and (E) MHD flow with heat transfer (buoyant convection). Finally, we introduce important details of the proposed activities, such as basic V&V rules and schedule. The main goal of the present paper is to help in establishing an efficient V&V framework and to initiate benchmarking among interested parties. The comparison results computed by the codes against analytical solutions and trusted experimental and numerical data as well as code-to-code comparisons will be presented and analyzed in companion paper/papers.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fusengdes.2014.04.049</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-3796 |
ispartof | Fusion engineering and design, 2015-11, Vol.100, p.65-72 |
issn | 0920-3796 1873-7196 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_302155 |
source | Elsevier ScienceDirect Journals Complete; Recercat |
subjects | Blanket Computer code Física Física de fluids Liquid metal magnetohydrodynamics Magnetohidrodinàmica Magnetohydrodynamics Àrees temàtiques de la UPC |
title | An approach to verification and validation of MHD codes for fusion applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20approach%20to%20verification%20and%20validation%20of%20MHD%20codes%20for%20fusion%20applications&rft.jtitle=Fusion%20engineering%20and%20design&rft.au=Smolentsev,%20S.&rft.date=2015-11-01&rft.volume=100&rft.spage=65&rft.epage=72&rft.pages=65-72&rft.issn=0920-3796&rft.eissn=1873-7196&rft_id=info:doi/10.1016/j.fusengdes.2014.04.049&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_302155%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0920379614003263&rfr_iscdi=true |