A linear optimization-based method for data privacy in statistical tabular data
National Statistical Agencies routinely disseminate large amount of data. Prior to dissemination these data have to be protected to avoid releasing confidential information. Controlled tabular adjustment (CTA) is one of the available methods for this purpose. CTA formulates an optimization problem t...
Gespeichert in:
Veröffentlicht in: | Optimization methods & software 2019-01, Vol.34 (1), p.37-61 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Optimization methods & software |
container_volume | 34 |
creator | Castro, Jordi González, José A. |
description | National Statistical Agencies routinely disseminate large amount of data. Prior to dissemination these data have to be protected to avoid releasing confidential information. Controlled tabular adjustment (CTA) is one of the available methods for this purpose. CTA formulates an optimization problem that looks for the safe table which is closest to the original one. The standard CTA approach results in a mixed integer linear optimization (MILO) problem, which is very challenging for current technology. In this work we present a much less costly variant of CTA that formulates a multiobjective linear optimization (LO) problem, where binary variables are pre-fixed, and the resulting continuous problem is solved by lexicographic optimization. Extensive computational results are reported using both commercial (CPLEX and XPRESS) and open source (Clp) solvers, with either simplex or interior-point methods, on a set of real instances. Most instances were successfully solved with the LO-CTA variant in less than one hour, while many of them are computationally very expensive with the MILO-CTA formulation. The interior-point method outperformed simplex in this particular application. |
doi_str_mv | 10.1080/10556788.2017.1332620 |
format | Article |
fullrecord | <record><control><sourceid>proquest_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_293149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161334613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-73df3a544e9696c471534f69b77700946bd7f6a6772a89e0cefeff0c5e0d68a63</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoqNWfIAQ8b518bLJ7U8QvKHjRc5hmE4xsNzVJlfrr3aUVbx5mJgPv-zJ5CLlgMGfQwBWDula6aeYcmJ4zIbjicEBOGPC2kq3Qh9O7rqtJdExOc34HAMmkOiHPN7QPg8NE47qEVfjGEuJQLTG7jq5ceYsd9THRDgvSdQqfaLc0DDSXUZhLsNjTgstNjzvNGTny2Gd3vp8z8np_93L7WC2eH55ubxaVlVyXSovOC6yldK1qlZWa1UJ61S611gCtVMtOe4VKa45N68A677wHWzvoVINKzAjb5dq8sSY565LFYiKGv2UqDpob3go2cpiRy51nneLHxuVi3uMmDeOZhjM1cpNTm5F6n5xizsl5M357hWlrGJiJt_nlbSbeZs979F3vfGEYga3wK6a-MwW3fUw-4WBDNuL_iB8PHoZh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161334613</pqid></control><display><type>article</type><title>A linear optimization-based method for data privacy in statistical tabular data</title><source>Recercat</source><creator>Castro, Jordi ; González, José A.</creator><creatorcontrib>Castro, Jordi ; González, José A.</creatorcontrib><description>National Statistical Agencies routinely disseminate large amount of data. Prior to dissemination these data have to be protected to avoid releasing confidential information. Controlled tabular adjustment (CTA) is one of the available methods for this purpose. CTA formulates an optimization problem that looks for the safe table which is closest to the original one. The standard CTA approach results in a mixed integer linear optimization (MILO) problem, which is very challenging for current technology. In this work we present a much less costly variant of CTA that formulates a multiobjective linear optimization (LO) problem, where binary variables are pre-fixed, and the resulting continuous problem is solved by lexicographic optimization. Extensive computational results are reported using both commercial (CPLEX and XPRESS) and open source (Clp) solvers, with either simplex or interior-point methods, on a set of real instances. Most instances were successfully solved with the LO-CTA variant in less than one hour, while many of them are computationally very expensive with the MILO-CTA formulation. The interior-point method outperformed simplex in this particular application.</description><identifier>ISSN: 1055-6788</identifier><identifier>EISSN: 1029-4937</identifier><identifier>DOI: 10.1080/10556788.2017.1332620</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>90 Operations research, mathematical programming ; 90C Mathematical programming ; benchmarking ; Classificació AMS ; data privacy ; Data science ; interior-point methods ; Investigació operativa ; lexicographic optimization ; linear optimization ; Matemàtiques i estadística ; Mixed integer ; Multiple objective analysis ; Optimization ; Solvers ; statistical disclosure control ; Tables (data) ; Àrees temàtiques de la UPC</subject><ispartof>Optimization methods & software, 2019-01, Vol.34 (1), p.37-61</ispartof><rights>2017 Informa UK Limited, trading as Taylor & Francis Group 2017</rights><rights>2017 Informa UK Limited, trading as Taylor & Francis Group</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-73df3a544e9696c471534f69b77700946bd7f6a6772a89e0cefeff0c5e0d68a63</citedby><cites>FETCH-LOGICAL-c427t-73df3a544e9696c471534f69b77700946bd7f6a6772a89e0cefeff0c5e0d68a63</cites><orcidid>0000-0003-3573-4568</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26951</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/293149$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Castro, Jordi</creatorcontrib><creatorcontrib>González, José A.</creatorcontrib><title>A linear optimization-based method for data privacy in statistical tabular data</title><title>Optimization methods & software</title><description>National Statistical Agencies routinely disseminate large amount of data. Prior to dissemination these data have to be protected to avoid releasing confidential information. Controlled tabular adjustment (CTA) is one of the available methods for this purpose. CTA formulates an optimization problem that looks for the safe table which is closest to the original one. The standard CTA approach results in a mixed integer linear optimization (MILO) problem, which is very challenging for current technology. In this work we present a much less costly variant of CTA that formulates a multiobjective linear optimization (LO) problem, where binary variables are pre-fixed, and the resulting continuous problem is solved by lexicographic optimization. Extensive computational results are reported using both commercial (CPLEX and XPRESS) and open source (Clp) solvers, with either simplex or interior-point methods, on a set of real instances. Most instances were successfully solved with the LO-CTA variant in less than one hour, while many of them are computationally very expensive with the MILO-CTA formulation. The interior-point method outperformed simplex in this particular application.</description><subject>90 Operations research, mathematical programming</subject><subject>90C Mathematical programming</subject><subject>benchmarking</subject><subject>Classificació AMS</subject><subject>data privacy</subject><subject>Data science</subject><subject>interior-point methods</subject><subject>Investigació operativa</subject><subject>lexicographic optimization</subject><subject>linear optimization</subject><subject>Matemàtiques i estadística</subject><subject>Mixed integer</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Solvers</subject><subject>statistical disclosure control</subject><subject>Tables (data)</subject><subject>Àrees temàtiques de la UPC</subject><issn>1055-6788</issn><issn>1029-4937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kE1LAzEQhoMoqNWfIAQ8b518bLJ7U8QvKHjRc5hmE4xsNzVJlfrr3aUVbx5mJgPv-zJ5CLlgMGfQwBWDula6aeYcmJ4zIbjicEBOGPC2kq3Qh9O7rqtJdExOc34HAMmkOiHPN7QPg8NE47qEVfjGEuJQLTG7jq5ceYsd9THRDgvSdQqfaLc0DDSXUZhLsNjTgstNjzvNGTny2Gd3vp8z8np_93L7WC2eH55ubxaVlVyXSovOC6yldK1qlZWa1UJ61S611gCtVMtOe4VKa45N68A677wHWzvoVINKzAjb5dq8sSY565LFYiKGv2UqDpob3go2cpiRy51nneLHxuVi3uMmDeOZhjM1cpNTm5F6n5xizsl5M357hWlrGJiJt_nlbSbeZs979F3vfGEYga3wK6a-MwW3fUw-4WBDNuL_iB8PHoZh</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Castro, Jordi</creator><creator>González, José A.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0003-3573-4568</orcidid></search><sort><creationdate>20190102</creationdate><title>A linear optimization-based method for data privacy in statistical tabular data</title><author>Castro, Jordi ; González, José A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-73df3a544e9696c471534f69b77700946bd7f6a6772a89e0cefeff0c5e0d68a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>90 Operations research, mathematical programming</topic><topic>90C Mathematical programming</topic><topic>benchmarking</topic><topic>Classificació AMS</topic><topic>data privacy</topic><topic>Data science</topic><topic>interior-point methods</topic><topic>Investigació operativa</topic><topic>lexicographic optimization</topic><topic>linear optimization</topic><topic>Matemàtiques i estadística</topic><topic>Mixed integer</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Solvers</topic><topic>statistical disclosure control</topic><topic>Tables (data)</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castro, Jordi</creatorcontrib><creatorcontrib>González, José A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>Optimization methods & software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Castro, Jordi</au><au>González, José A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A linear optimization-based method for data privacy in statistical tabular data</atitle><jtitle>Optimization methods & software</jtitle><date>2019-01-02</date><risdate>2019</risdate><volume>34</volume><issue>1</issue><spage>37</spage><epage>61</epage><pages>37-61</pages><issn>1055-6788</issn><eissn>1029-4937</eissn><abstract>National Statistical Agencies routinely disseminate large amount of data. Prior to dissemination these data have to be protected to avoid releasing confidential information. Controlled tabular adjustment (CTA) is one of the available methods for this purpose. CTA formulates an optimization problem that looks for the safe table which is closest to the original one. The standard CTA approach results in a mixed integer linear optimization (MILO) problem, which is very challenging for current technology. In this work we present a much less costly variant of CTA that formulates a multiobjective linear optimization (LO) problem, where binary variables are pre-fixed, and the resulting continuous problem is solved by lexicographic optimization. Extensive computational results are reported using both commercial (CPLEX and XPRESS) and open source (Clp) solvers, with either simplex or interior-point methods, on a set of real instances. Most instances were successfully solved with the LO-CTA variant in less than one hour, while many of them are computationally very expensive with the MILO-CTA formulation. The interior-point method outperformed simplex in this particular application.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/10556788.2017.1332620</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-3573-4568</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1055-6788 |
ispartof | Optimization methods & software, 2019-01, Vol.34 (1), p.37-61 |
issn | 1055-6788 1029-4937 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_293149 |
source | Recercat |
subjects | 90 Operations research, mathematical programming 90C Mathematical programming benchmarking Classificació AMS data privacy Data science interior-point methods Investigació operativa lexicographic optimization linear optimization Matemàtiques i estadística Mixed integer Multiple objective analysis Optimization Solvers statistical disclosure control Tables (data) Àrees temàtiques de la UPC |
title | A linear optimization-based method for data privacy in statistical tabular data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20linear%20optimization-based%20method%20for%20data%20privacy%20in%20statistical%20tabular%20data&rft.jtitle=Optimization%20methods%20&%20software&rft.au=Castro,%20Jordi&rft.date=2019-01-02&rft.volume=34&rft.issue=1&rft.spage=37&rft.epage=61&rft.pages=37-61&rft.issn=1055-6788&rft.eissn=1029-4937&rft_id=info:doi/10.1080/10556788.2017.1332620&rft_dat=%3Cproquest_XX2%3E2161334613%3C/proquest_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161334613&rft_id=info:pmid/&rfr_iscdi=true |