Effect of Size and Structure on the Ground-State and Excited-State Electronic Structure of TiO2 Nanoparticles

We investigated the influence of size and structure on the electronic structure of TiO2 nanoparticles 0.5–3.2 nm in diameter, in both vacuum and water, using density functional theory (DFT) calculations. Specifically, we tracked the optical and electronic energy gap of a set of (TiO2)n nanoparticles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2016-08, Vol.12 (8), p.3751-3763
Hauptverfasser: Cho, Daeheum, Ko, Kyoung Chul, Lamiel-García, Oriol, Bromley, Stefan T, Lee, Jin Yong, Illas, Francesc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3763
container_issue 8
container_start_page 3751
container_title Journal of chemical theory and computation
container_volume 12
creator Cho, Daeheum
Ko, Kyoung Chul
Lamiel-García, Oriol
Bromley, Stefan T
Lee, Jin Yong
Illas, Francesc
description We investigated the influence of size and structure on the electronic structure of TiO2 nanoparticles 0.5–3.2 nm in diameter, in both vacuum and water, using density functional theory (DFT) calculations. Specifically, we tracked the optical and electronic energy gap of a set of (TiO2)n nanoparticles ranging from small non-bulklike clusters with n = 4, 8, and 16, to larger nanoparticles derived from the anatase bulk crystal with n = 35 and 84. As the difference between these two energy gaps (the exciton binding energy) becomes negligible in the bulk, this magnitude provides an indicator of the bulklike character of the electronic structure of the nanoparticles under study. Extrapolating our results to larger sizes, we obtain a rough estimate of the nanoparticle size at which the electronic structure will begin to be effectively bulklike. Our results generally confirmed that the electronic structure of the nanoparticle ground state and excited state has a more pronounced structure dependency than size dependency within a size range of 0.5–1.5 nm. We also showed that the thermodynamic preference for the photocatalytic species is the first S1 exciton. This S1 exciton is stable under vacuum but may evolve to free charge carriers upon structural relaxation in an aqueous environment for particles 0.5–1.5 nm in size studied in the present article. An analysis of ionization potentials and electron affinities, relative to the standard reduction potential for the water splitting half-reactions, revealed the importance of considering the structural relaxation in the excited states and the presence of water for assessing the thermodynamic conditions for photocatalytic water splitting.
doi_str_mv 10.1021/acs.jctc.6b00519
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_291832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1810555478</sourcerecordid><originalsourceid>FETCH-LOGICAL-a398t-9c83744bca0ba9df6b4048ac907aa710df12616e59177d5d2c670efb44ff45193</originalsourceid><addsrcrecordid>eNpNkUlPwzAQhS0EomW5c0I-ciDFW-L4iFApSBU9tJwtZ2KLVGlcbEcCfj2BluUwmkXfG2nmIXRByYQSRm8MxMkaEkyKipCcqgM0prlQmSpYcfhb03KETmJcE8K5YPwYjZjkUgmaj9Fm6pyFhL3Dy-bDYtPVeJlCD6kPFvsOpxeLZ8H3XZ0tk0k7YvoGTbI_k2k7bAi-a-C_1OFVs2D4yXR-a0JqoLXxDB0500Z7vs-n6Pl-urp7yOaL2ePd7TwzXJUpU1ByKUQFhlRG1a6oBBGlAUWkMZKS2lFW0MLmikpZ5zWDQhLrKiGcE8Mb-Cmiu70Qe9DBgg1gkvam-Wu-ghHJNFO05GzQXO002-BfexuT3jQRbNuazvo-alpSkue5kOWAXu7RvtrYWm9DszHhXf-8dQCud8BgkF77PnTDtZoS_eWa_h4Orum9a_wTuS-JeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810555478</pqid></control><display><type>article</type><title>Effect of Size and Structure on the Ground-State and Excited-State Electronic Structure of TiO2 Nanoparticles</title><source>American Chemical Society Publications</source><source>Recercat</source><creator>Cho, Daeheum ; Ko, Kyoung Chul ; Lamiel-García, Oriol ; Bromley, Stefan T ; Lee, Jin Yong ; Illas, Francesc</creator><creatorcontrib>Cho, Daeheum ; Ko, Kyoung Chul ; Lamiel-García, Oriol ; Bromley, Stefan T ; Lee, Jin Yong ; Illas, Francesc</creatorcontrib><description>We investigated the influence of size and structure on the electronic structure of TiO2 nanoparticles 0.5–3.2 nm in diameter, in both vacuum and water, using density functional theory (DFT) calculations. Specifically, we tracked the optical and electronic energy gap of a set of (TiO2)n nanoparticles ranging from small non-bulklike clusters with n = 4, 8, and 16, to larger nanoparticles derived from the anatase bulk crystal with n = 35 and 84. As the difference between these two energy gaps (the exciton binding energy) becomes negligible in the bulk, this magnitude provides an indicator of the bulklike character of the electronic structure of the nanoparticles under study. Extrapolating our results to larger sizes, we obtain a rough estimate of the nanoparticle size at which the electronic structure will begin to be effectively bulklike. Our results generally confirmed that the electronic structure of the nanoparticle ground state and excited state has a more pronounced structure dependency than size dependency within a size range of 0.5–1.5 nm. We also showed that the thermodynamic preference for the photocatalytic species is the first S1 exciton. This S1 exciton is stable under vacuum but may evolve to free charge carriers upon structural relaxation in an aqueous environment for particles 0.5–1.5 nm in size studied in the present article. An analysis of ionization potentials and electron affinities, relative to the standard reduction potential for the water splitting half-reactions, revealed the importance of considering the structural relaxation in the excited states and the presence of water for assessing the thermodynamic conditions for photocatalytic water splitting.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00519</identifier><identifier>PMID: 27379415</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Density functionals ; Diòxid de titani ; Nanoparticles ; Nanopartícules ; Teoria del funcional de densitat ; Titanium dioxide</subject><ispartof>Journal of chemical theory and computation, 2016-08, Vol.12 (8), p.3751-3763</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>(c) American Chemical Society , 2016 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00519$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00519$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,26951,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27379415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Daeheum</creatorcontrib><creatorcontrib>Ko, Kyoung Chul</creatorcontrib><creatorcontrib>Lamiel-García, Oriol</creatorcontrib><creatorcontrib>Bromley, Stefan T</creatorcontrib><creatorcontrib>Lee, Jin Yong</creatorcontrib><creatorcontrib>Illas, Francesc</creatorcontrib><title>Effect of Size and Structure on the Ground-State and Excited-State Electronic Structure of TiO2 Nanoparticles</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We investigated the influence of size and structure on the electronic structure of TiO2 nanoparticles 0.5–3.2 nm in diameter, in both vacuum and water, using density functional theory (DFT) calculations. Specifically, we tracked the optical and electronic energy gap of a set of (TiO2)n nanoparticles ranging from small non-bulklike clusters with n = 4, 8, and 16, to larger nanoparticles derived from the anatase bulk crystal with n = 35 and 84. As the difference between these two energy gaps (the exciton binding energy) becomes negligible in the bulk, this magnitude provides an indicator of the bulklike character of the electronic structure of the nanoparticles under study. Extrapolating our results to larger sizes, we obtain a rough estimate of the nanoparticle size at which the electronic structure will begin to be effectively bulklike. Our results generally confirmed that the electronic structure of the nanoparticle ground state and excited state has a more pronounced structure dependency than size dependency within a size range of 0.5–1.5 nm. We also showed that the thermodynamic preference for the photocatalytic species is the first S1 exciton. This S1 exciton is stable under vacuum but may evolve to free charge carriers upon structural relaxation in an aqueous environment for particles 0.5–1.5 nm in size studied in the present article. An analysis of ionization potentials and electron affinities, relative to the standard reduction potential for the water splitting half-reactions, revealed the importance of considering the structural relaxation in the excited states and the presence of water for assessing the thermodynamic conditions for photocatalytic water splitting.</description><subject>Density functionals</subject><subject>Diòxid de titani</subject><subject>Nanoparticles</subject><subject>Nanopartícules</subject><subject>Teoria del funcional de densitat</subject><subject>Titanium dioxide</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNpNkUlPwzAQhS0EomW5c0I-ciDFW-L4iFApSBU9tJwtZ2KLVGlcbEcCfj2BluUwmkXfG2nmIXRByYQSRm8MxMkaEkyKipCcqgM0prlQmSpYcfhb03KETmJcE8K5YPwYjZjkUgmaj9Fm6pyFhL3Dy-bDYtPVeJlCD6kPFvsOpxeLZ8H3XZ0tk0k7YvoGTbI_k2k7bAi-a-C_1OFVs2D4yXR-a0JqoLXxDB0500Z7vs-n6Pl-urp7yOaL2ePd7TwzXJUpU1ByKUQFhlRG1a6oBBGlAUWkMZKS2lFW0MLmikpZ5zWDQhLrKiGcE8Mb-Cmiu70Qe9DBgg1gkvam-Wu-ghHJNFO05GzQXO002-BfexuT3jQRbNuazvo-alpSkue5kOWAXu7RvtrYWm9DszHhXf-8dQCud8BgkF77PnTDtZoS_eWa_h4Orum9a_wTuS-JeA</recordid><startdate>20160809</startdate><enddate>20160809</enddate><creator>Cho, Daeheum</creator><creator>Ko, Kyoung Chul</creator><creator>Lamiel-García, Oriol</creator><creator>Bromley, Stefan T</creator><creator>Lee, Jin Yong</creator><creator>Illas, Francesc</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope><scope>XX2</scope></search><sort><creationdate>20160809</creationdate><title>Effect of Size and Structure on the Ground-State and Excited-State Electronic Structure of TiO2 Nanoparticles</title><author>Cho, Daeheum ; Ko, Kyoung Chul ; Lamiel-García, Oriol ; Bromley, Stefan T ; Lee, Jin Yong ; Illas, Francesc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a398t-9c83744bca0ba9df6b4048ac907aa710df12616e59177d5d2c670efb44ff45193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Density functionals</topic><topic>Diòxid de titani</topic><topic>Nanoparticles</topic><topic>Nanopartícules</topic><topic>Teoria del funcional de densitat</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Daeheum</creatorcontrib><creatorcontrib>Ko, Kyoung Chul</creatorcontrib><creatorcontrib>Lamiel-García, Oriol</creatorcontrib><creatorcontrib>Bromley, Stefan T</creatorcontrib><creatorcontrib>Lee, Jin Yong</creatorcontrib><creatorcontrib>Illas, Francesc</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Daeheum</au><au>Ko, Kyoung Chul</au><au>Lamiel-García, Oriol</au><au>Bromley, Stefan T</au><au>Lee, Jin Yong</au><au>Illas, Francesc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Size and Structure on the Ground-State and Excited-State Electronic Structure of TiO2 Nanoparticles</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-08-09</date><risdate>2016</risdate><volume>12</volume><issue>8</issue><spage>3751</spage><epage>3763</epage><pages>3751-3763</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We investigated the influence of size and structure on the electronic structure of TiO2 nanoparticles 0.5–3.2 nm in diameter, in both vacuum and water, using density functional theory (DFT) calculations. Specifically, we tracked the optical and electronic energy gap of a set of (TiO2)n nanoparticles ranging from small non-bulklike clusters with n = 4, 8, and 16, to larger nanoparticles derived from the anatase bulk crystal with n = 35 and 84. As the difference between these two energy gaps (the exciton binding energy) becomes negligible in the bulk, this magnitude provides an indicator of the bulklike character of the electronic structure of the nanoparticles under study. Extrapolating our results to larger sizes, we obtain a rough estimate of the nanoparticle size at which the electronic structure will begin to be effectively bulklike. Our results generally confirmed that the electronic structure of the nanoparticle ground state and excited state has a more pronounced structure dependency than size dependency within a size range of 0.5–1.5 nm. We also showed that the thermodynamic preference for the photocatalytic species is the first S1 exciton. This S1 exciton is stable under vacuum but may evolve to free charge carriers upon structural relaxation in an aqueous environment for particles 0.5–1.5 nm in size studied in the present article. An analysis of ionization potentials and electron affinities, relative to the standard reduction potential for the water splitting half-reactions, revealed the importance of considering the structural relaxation in the excited states and the presence of water for assessing the thermodynamic conditions for photocatalytic water splitting.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27379415</pmid><doi>10.1021/acs.jctc.6b00519</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2016-08, Vol.12 (8), p.3751-3763
issn 1549-9618
1549-9626
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_291832
source American Chemical Society Publications; Recercat
subjects Density functionals
Diòxid de titani
Nanoparticles
Nanopartícules
Teoria del funcional de densitat
Titanium dioxide
title Effect of Size and Structure on the Ground-State and Excited-State Electronic Structure of TiO2 Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Size%20and%20Structure%20on%20the%20Ground-State%20and%20Excited-State%20Electronic%20Structure%20of%20TiO2%20Nanoparticles&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Cho,%20Daeheum&rft.date=2016-08-09&rft.volume=12&rft.issue=8&rft.spage=3751&rft.epage=3763&rft.pages=3751-3763&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00519&rft_dat=%3Cproquest_csuc_%3E1810555478%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1810555478&rft_id=info:pmid/27379415&rfr_iscdi=true