Joint User Scheduling, Precoder Design, and Transmit Direction Selection in MIMO TDD Small Cell Networks

New short-length single-direction frame structures are proposed for 5G time division duplex (TDD) systems, where the transmit direction [i.e., either downlink (DL) or uplink (UL)] can be independently chosen at each cell in every frame. Accordingly, high flexibility is provided to match the per-cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2017-04, Vol.16 (4), p.2434-2449
Hauptverfasser: Lagen, Sandra, Agustin, Adrian, Vidal, Josep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New short-length single-direction frame structures are proposed for 5G time division duplex (TDD) systems, where the transmit direction [i.e., either downlink (DL) or uplink (UL)] can be independently chosen at each cell in every frame. Accordingly, high flexibility is provided to match the per-cell DL/UL traffic asymmetries and full exploitation of dynamic TDD is allowed. As a downside, interference management becomes crucial. In this regard, this paper proposes a procedure for dynamic TDD in dense multiple-input multiple-output small cell networks, where the transmit direction selected per small cell (SC) is dynamically optimized together with the user scheduling and transmit precoding. We focus on the maximization of a general utility function that takes into account the DL/UL traffic asymmetries of each user and the interference conditions in the network. Although the problem is non-convex, it is decomposed thanks to the interference-cost concept and then efficiently solved in parallel. Simulation results show gains in DL and UL average rates for different traffic asymmetries and SC/user densities as compared to existing dynamic TDD schemes thanks to the proposed joint optimization. The gains become more significant when there is high interference and limited number of antennas.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2017.2664837