Self-biased reconfigurable graphene stacks for terahertz plasmonics

The gate-controllable complex conductivity of graphene offers unprecedented opportunities for reconfigurable plasmonics at terahertz and mid-infrared frequencies. However, the requirement of a gating electrode close to graphene and the single ‘control knob’ that this approach offers limits the pract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-03, Vol.6 (1), p.6334-6334, Article 6334
Hauptverfasser: Gomez-Diaz, J.S., Moldovan, C, Capdevila, S, Romeu, J, Bernard, L.S., Magrez, A, Ionescu, A.M., Perruisseau-Carrier, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6334
container_issue 1
container_start_page 6334
container_title Nature communications
container_volume 6
creator Gomez-Diaz, J.S.
Moldovan, C
Capdevila, S
Romeu, J
Bernard, L.S.
Magrez, A
Ionescu, A.M.
Perruisseau-Carrier, J
description The gate-controllable complex conductivity of graphene offers unprecedented opportunities for reconfigurable plasmonics at terahertz and mid-infrared frequencies. However, the requirement of a gating electrode close to graphene and the single ‘control knob’ that this approach offers limits the practical implementation and performance of these devices. Here we report on graphene stacks composed of two or more graphene monolayers separated by electrically thin dielectrics and present a simple and rigorous theoretical framework for their characterization. In a first implementation, two graphene layers gate each other, thereby behaving as a controllable single equivalent layer but without any additional gating structure. Second, we show that adding an additional gate allows independent control of the complex conductivity of each layer within the stack and provides enhanced control on the stack equivalent complex conductivity. These results are very promising for the development of THz and mid-infrared plasmonic devices with enhanced performance and reconfiguration capabilities. The unusual electronic and optical properties of graphene are finding increasing applications for terahertz and mid-infrared plasmonics. Here, the authors show how monolayers of graphene separated by thin dielectric layers can act as tunable structures for plasmonic device platforms.
doi_str_mv 10.1038/ncomms7334
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_291128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660437662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-e637051e2bdf8181f7a819a040a0cecda78ac670613d87613d3055a095a0ee933</originalsourceid><addsrcrecordid>eNplkV1LwzAUhoMobszd-AOk4I0o1Xy0TXspwy8YeKFeh9P0dOtsm5q0F_rrzdzUoYGTk5DnvHmTQ8gxo5eMivSq1aZpnBQi2iNjTiMWMsnF_s56RKbOragfImNpFB2SEY8llzKTYzJ7wroM8wocFoFFbdqyWgwW8hqDhYVuiS0Grgf96oLS2KBHC0u0_UfQ1eAa01baHZGDEmqH022ekJfbm-fZfTh_vHuYXc9DHfGsDzERksYMeV6UKUtZKSFlGdCIAtWoC5Ap6ETShIkiletZ0DgGmvlAzISYELbR1W7QyptFq6FXBqrfzTo4lVzxjDGe-pqzTU1nzduArldN5TTWNbRoBqdYktBIyCThHj39g67MYFv_Ik_FmYwS9mXifGvCGucslqqzVQP2XTGq1h1Rvx3x8MlWcsgbLH7Q7__3wMUGcP6oXaDdufO_3CeaGZSt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1659746193</pqid></control><display><type>article</type><title>Self-biased reconfigurable graphene stacks for terahertz plasmonics</title><source>Springer Nature OA Free Journals</source><creator>Gomez-Diaz, J.S. ; Moldovan, C ; Capdevila, S ; Romeu, J ; Bernard, L.S. ; Magrez, A ; Ionescu, A.M. ; Perruisseau-Carrier, J</creator><creatorcontrib>Gomez-Diaz, J.S. ; Moldovan, C ; Capdevila, S ; Romeu, J ; Bernard, L.S. ; Magrez, A ; Ionescu, A.M. ; Perruisseau-Carrier, J</creatorcontrib><description>The gate-controllable complex conductivity of graphene offers unprecedented opportunities for reconfigurable plasmonics at terahertz and mid-infrared frequencies. However, the requirement of a gating electrode close to graphene and the single ‘control knob’ that this approach offers limits the practical implementation and performance of these devices. Here we report on graphene stacks composed of two or more graphene monolayers separated by electrically thin dielectrics and present a simple and rigorous theoretical framework for their characterization. In a first implementation, two graphene layers gate each other, thereby behaving as a controllable single equivalent layer but without any additional gating structure. Second, we show that adding an additional gate allows independent control of the complex conductivity of each layer within the stack and provides enhanced control on the stack equivalent complex conductivity. These results are very promising for the development of THz and mid-infrared plasmonic devices with enhanced performance and reconfiguration capabilities. The unusual electronic and optical properties of graphene are finding increasing applications for terahertz and mid-infrared plasmonics. Here, the authors show how monolayers of graphene separated by thin dielectric layers can act as tunable structures for plasmonic device platforms.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms7334</identifier><identifier>PMID: 25727797</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 639/301/357/918 ; 639/766/25 ; 639/925/927/1021 ; Devices ; Física ; Heterostrucures ; Humanities and Social Sciences ; Layer graphene ; Metameterials ; Modulators ; multidisciplinary ; Plasmons (Física) ; Plasmons (Physics) ; Scattering ; Science ; Science (multidisciplinary) ; Time-domain spectroscopy ; Transistor ; Transport ; Wave-guides ; Àrees temàtiques de la UPC</subject><ispartof>Nature communications, 2015-03, Vol.6 (1), p.6334-6334, Article 6334</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><rights>info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by/3.0/es/"&gt;http://creativecommons.org/licenses/by/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-e637051e2bdf8181f7a819a040a0cecda78ac670613d87613d3055a095a0ee933</citedby><cites>FETCH-LOGICAL-c429t-e637051e2bdf8181f7a819a040a0cecda78ac670613d87613d3055a095a0ee933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms7334$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms7334$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,861,882,26955,27905,27906,41101,42170,51557</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms7334$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25727797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez-Diaz, J.S.</creatorcontrib><creatorcontrib>Moldovan, C</creatorcontrib><creatorcontrib>Capdevila, S</creatorcontrib><creatorcontrib>Romeu, J</creatorcontrib><creatorcontrib>Bernard, L.S.</creatorcontrib><creatorcontrib>Magrez, A</creatorcontrib><creatorcontrib>Ionescu, A.M.</creatorcontrib><creatorcontrib>Perruisseau-Carrier, J</creatorcontrib><title>Self-biased reconfigurable graphene stacks for terahertz plasmonics</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The gate-controllable complex conductivity of graphene offers unprecedented opportunities for reconfigurable plasmonics at terahertz and mid-infrared frequencies. However, the requirement of a gating electrode close to graphene and the single ‘control knob’ that this approach offers limits the practical implementation and performance of these devices. Here we report on graphene stacks composed of two or more graphene monolayers separated by electrically thin dielectrics and present a simple and rigorous theoretical framework for their characterization. In a first implementation, two graphene layers gate each other, thereby behaving as a controllable single equivalent layer but without any additional gating structure. Second, we show that adding an additional gate allows independent control of the complex conductivity of each layer within the stack and provides enhanced control on the stack equivalent complex conductivity. These results are very promising for the development of THz and mid-infrared plasmonic devices with enhanced performance and reconfiguration capabilities. The unusual electronic and optical properties of graphene are finding increasing applications for terahertz and mid-infrared plasmonics. Here, the authors show how monolayers of graphene separated by thin dielectric layers can act as tunable structures for plasmonic device platforms.</description><subject>140/133</subject><subject>639/301/357/918</subject><subject>639/766/25</subject><subject>639/925/927/1021</subject><subject>Devices</subject><subject>Física</subject><subject>Heterostrucures</subject><subject>Humanities and Social Sciences</subject><subject>Layer graphene</subject><subject>Metameterials</subject><subject>Modulators</subject><subject>multidisciplinary</subject><subject>Plasmons (Física)</subject><subject>Plasmons (Physics)</subject><subject>Scattering</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Time-domain spectroscopy</subject><subject>Transistor</subject><subject>Transport</subject><subject>Wave-guides</subject><subject>Àrees temàtiques de la UPC</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>XX2</sourceid><recordid>eNplkV1LwzAUhoMobszd-AOk4I0o1Xy0TXspwy8YeKFeh9P0dOtsm5q0F_rrzdzUoYGTk5DnvHmTQ8gxo5eMivSq1aZpnBQi2iNjTiMWMsnF_s56RKbOragfImNpFB2SEY8llzKTYzJ7wroM8wocFoFFbdqyWgwW8hqDhYVuiS0Grgf96oLS2KBHC0u0_UfQ1eAa01baHZGDEmqH022ekJfbm-fZfTh_vHuYXc9DHfGsDzERksYMeV6UKUtZKSFlGdCIAtWoC5Ap6ETShIkiletZ0DgGmvlAzISYELbR1W7QyptFq6FXBqrfzTo4lVzxjDGe-pqzTU1nzduArldN5TTWNbRoBqdYktBIyCThHj39g67MYFv_Ik_FmYwS9mXifGvCGucslqqzVQP2XTGq1h1Rvx3x8MlWcsgbLH7Q7__3wMUGcP6oXaDdufO_3CeaGZSt</recordid><startdate>20150302</startdate><enddate>20150302</enddate><creator>Gomez-Diaz, J.S.</creator><creator>Moldovan, C</creator><creator>Capdevila, S</creator><creator>Romeu, J</creator><creator>Bernard, L.S.</creator><creator>Magrez, A</creator><creator>Ionescu, A.M.</creator><creator>Perruisseau-Carrier, J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>XX2</scope></search><sort><creationdate>20150302</creationdate><title>Self-biased reconfigurable graphene stacks for terahertz plasmonics</title><author>Gomez-Diaz, J.S. ; Moldovan, C ; Capdevila, S ; Romeu, J ; Bernard, L.S. ; Magrez, A ; Ionescu, A.M. ; Perruisseau-Carrier, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-e637051e2bdf8181f7a819a040a0cecda78ac670613d87613d3055a095a0ee933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>140/133</topic><topic>639/301/357/918</topic><topic>639/766/25</topic><topic>639/925/927/1021</topic><topic>Devices</topic><topic>Física</topic><topic>Heterostrucures</topic><topic>Humanities and Social Sciences</topic><topic>Layer graphene</topic><topic>Metameterials</topic><topic>Modulators</topic><topic>multidisciplinary</topic><topic>Plasmons (Física)</topic><topic>Plasmons (Physics)</topic><topic>Scattering</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Time-domain spectroscopy</topic><topic>Transistor</topic><topic>Transport</topic><topic>Wave-guides</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez-Diaz, J.S.</creatorcontrib><creatorcontrib>Moldovan, C</creatorcontrib><creatorcontrib>Capdevila, S</creatorcontrib><creatorcontrib>Romeu, J</creatorcontrib><creatorcontrib>Bernard, L.S.</creatorcontrib><creatorcontrib>Magrez, A</creatorcontrib><creatorcontrib>Ionescu, A.M.</creatorcontrib><creatorcontrib>Perruisseau-Carrier, J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gomez-Diaz, J.S.</au><au>Moldovan, C</au><au>Capdevila, S</au><au>Romeu, J</au><au>Bernard, L.S.</au><au>Magrez, A</au><au>Ionescu, A.M.</au><au>Perruisseau-Carrier, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-biased reconfigurable graphene stacks for terahertz plasmonics</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2015-03-02</date><risdate>2015</risdate><volume>6</volume><issue>1</issue><spage>6334</spage><epage>6334</epage><pages>6334-6334</pages><artnum>6334</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The gate-controllable complex conductivity of graphene offers unprecedented opportunities for reconfigurable plasmonics at terahertz and mid-infrared frequencies. However, the requirement of a gating electrode close to graphene and the single ‘control knob’ that this approach offers limits the practical implementation and performance of these devices. Here we report on graphene stacks composed of two or more graphene monolayers separated by electrically thin dielectrics and present a simple and rigorous theoretical framework for their characterization. In a first implementation, two graphene layers gate each other, thereby behaving as a controllable single equivalent layer but without any additional gating structure. Second, we show that adding an additional gate allows independent control of the complex conductivity of each layer within the stack and provides enhanced control on the stack equivalent complex conductivity. These results are very promising for the development of THz and mid-infrared plasmonic devices with enhanced performance and reconfiguration capabilities. The unusual electronic and optical properties of graphene are finding increasing applications for terahertz and mid-infrared plasmonics. Here, the authors show how monolayers of graphene separated by thin dielectric layers can act as tunable structures for plasmonic device platforms.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25727797</pmid><doi>10.1038/ncomms7334</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2015-03, Vol.6 (1), p.6334-6334, Article 6334
issn 2041-1723
2041-1723
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_291128
source Springer Nature OA Free Journals
subjects 140/133
639/301/357/918
639/766/25
639/925/927/1021
Devices
Física
Heterostrucures
Humanities and Social Sciences
Layer graphene
Metameterials
Modulators
multidisciplinary
Plasmons (Física)
Plasmons (Physics)
Scattering
Science
Science (multidisciplinary)
Time-domain spectroscopy
Transistor
Transport
Wave-guides
Àrees temàtiques de la UPC
title Self-biased reconfigurable graphene stacks for terahertz plasmonics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-biased%20reconfigurable%20graphene%20stacks%20for%20terahertz%20plasmonics&rft.jtitle=Nature%20communications&rft.au=Gomez-Diaz,%20J.S.&rft.date=2015-03-02&rft.volume=6&rft.issue=1&rft.spage=6334&rft.epage=6334&rft.pages=6334-6334&rft.artnum=6334&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms7334&rft_dat=%3Cproquest_C6C%3E1660437662%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1659746193&rft_id=info:pmid/25727797&rfr_iscdi=true