A recovery-explicit error estimator in energy norm for linear elasticity
Significant research effort has been devoted to produce one-sided error estimates for Finite Element Analyses, in particular to provide upper bounds of the actual error. Typically, this has been achieved using residual-type estimates. One of the most popular and simpler (in terms of implementation)...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2015-04, Vol.287, p.172-190 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 190 |
---|---|
container_issue | |
container_start_page | 172 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 287 |
creator | Nadal, E. Díez, P. Ródenas, J.J. Tur, M. Fuenmayor, F.J. |
description | Significant research effort has been devoted to produce one-sided error estimates for Finite Element Analyses, in particular to provide upper bounds of the actual error. Typically, this has been achieved using residual-type estimates. One of the most popular and simpler (in terms of implementation) techniques used in commercial codes is the recovery-based error estimator. This technique produces accurate estimations of the exact error but is not designed to naturally produce upper bounds of the error in energy norm. Some attempts to remedy this situation provide bounds depending on unknown constants. Here, a new step towards obtaining error bounds from the recovery-based estimates is proposed. The idea is (1) to use a locally equilibrated recovery technique to obtain an accurate estimation of the exact error, (2) to add an explicit-type error bound of the lack of equilibrium of the recovered stresses in order to guarantee a bound of the actual error and (3) to efficiently and accurately evaluate the constants appearing in the bounding expressions, thus providing asymptotic bounds. The numerical tests with h-adaptive refinement process show that the bounding property holds even for coarse meshes, providing upper bounds in practical applications. |
doi_str_mv | 10.1016/j.cma.2015.01.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_291080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782515000262</els_id><sourcerecordid>1709758778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-a7e605c91f109800eae6b834dcb9ba8c98126803ca84ae1cea709c092c2357943</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4Ab3v0snWS_UiCp1LUCgUveg7pdCop-1GTbbH_3ikV9GSYMJMw782bJ8SthIkEWd9vJtj6iQJZTUByFGdiJI22uZKFORcjgLLKtVHVpbhKaQN8jFQjMZ9mkbDfUzzk9LVtAoYhoxj7mFEaQusHrkKXUUfx45B1fWyzNX81oSPPPY3nLsYcrsXF2jeJbn7yWLw_Pb7N5vni9fllNl3kWFblkHtNNVRo5VqCNQDkqV6aolzh0i69QcuqagMFelN6kkheg0WwClVRaVsWYyFPvJh26Fg7RfSD6334fRyvAq2cshKYbCzuTpht7D93vJdrQ0JqGt9Rv0tO8gxdGa3NH_rYpxRp7baRXYgHJ8EdnXYbx067o9MOJEfBmIcThnjvfaDoEgbqkFaBJQ1u1Yd_0N-NBIXv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709758778</pqid></control><display><type>article</type><title>A recovery-explicit error estimator in energy norm for linear elasticity</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Nadal, E. ; Díez, P. ; Ródenas, J.J. ; Tur, M. ; Fuenmayor, F.J.</creator><creatorcontrib>Nadal, E. ; Díez, P. ; Ródenas, J.J. ; Tur, M. ; Fuenmayor, F.J.</creatorcontrib><description>Significant research effort has been devoted to produce one-sided error estimates for Finite Element Analyses, in particular to provide upper bounds of the actual error. Typically, this has been achieved using residual-type estimates. One of the most popular and simpler (in terms of implementation) techniques used in commercial codes is the recovery-based error estimator. This technique produces accurate estimations of the exact error but is not designed to naturally produce upper bounds of the error in energy norm. Some attempts to remedy this situation provide bounds depending on unknown constants. Here, a new step towards obtaining error bounds from the recovery-based estimates is proposed. The idea is (1) to use a locally equilibrated recovery technique to obtain an accurate estimation of the exact error, (2) to add an explicit-type error bound of the lack of equilibrium of the recovered stresses in order to guarantee a bound of the actual error and (3) to efficiently and accurately evaluate the constants appearing in the bounding expressions, thus providing asymptotic bounds. The numerical tests with h-adaptive refinement process show that the bounding property holds even for coarse meshes, providing upper bounds in practical applications.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2015.01.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>65 Numerical analysis ; 65G Error analysis and interval analysis ; A-POSTERIORI ERROR ; Anàlisi numèrica ; Asymptotic properties ; AVERAGING TECHNIQUE ; BOUNDS ; Classificació AMS ; Constants ; Elements finits, Mètode dels ; EQUILIBRIUM ; Error analysis ; Error bounding ; Errors ; Estimates ; Estimators ; Explicit residual error estimator ; FINITE-ELEMENT-METHOD ; IN FIELD-EQUATIONS ; Matemàtiques i estadística ; MECHANICS ; Mètodes en elements finits ; Norms ; Numerical analysis ; Recovery techniques ; STRESS-FIELDS ; SUPERCONVERGENT PATCH RECOVERY ; Upper bounds ; Àrees temàtiques de la UPC</subject><ispartof>Computer methods in applied mechanics and engineering, 2015-04, Vol.287, p.172-190</ispartof><rights>2015 Elsevier B.V.</rights><rights>info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-a7e605c91f109800eae6b834dcb9ba8c98126803ca84ae1cea709c092c2357943</citedby><cites>FETCH-LOGICAL-c454t-a7e605c91f109800eae6b834dcb9ba8c98126803ca84ae1cea709c092c2357943</cites><orcidid>0000-0002-2808-298X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782515000262$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nadal, E.</creatorcontrib><creatorcontrib>Díez, P.</creatorcontrib><creatorcontrib>Ródenas, J.J.</creatorcontrib><creatorcontrib>Tur, M.</creatorcontrib><creatorcontrib>Fuenmayor, F.J.</creatorcontrib><title>A recovery-explicit error estimator in energy norm for linear elasticity</title><title>Computer methods in applied mechanics and engineering</title><description>Significant research effort has been devoted to produce one-sided error estimates for Finite Element Analyses, in particular to provide upper bounds of the actual error. Typically, this has been achieved using residual-type estimates. One of the most popular and simpler (in terms of implementation) techniques used in commercial codes is the recovery-based error estimator. This technique produces accurate estimations of the exact error but is not designed to naturally produce upper bounds of the error in energy norm. Some attempts to remedy this situation provide bounds depending on unknown constants. Here, a new step towards obtaining error bounds from the recovery-based estimates is proposed. The idea is (1) to use a locally equilibrated recovery technique to obtain an accurate estimation of the exact error, (2) to add an explicit-type error bound of the lack of equilibrium of the recovered stresses in order to guarantee a bound of the actual error and (3) to efficiently and accurately evaluate the constants appearing in the bounding expressions, thus providing asymptotic bounds. The numerical tests with h-adaptive refinement process show that the bounding property holds even for coarse meshes, providing upper bounds in practical applications.</description><subject>65 Numerical analysis</subject><subject>65G Error analysis and interval analysis</subject><subject>A-POSTERIORI ERROR</subject><subject>Anàlisi numèrica</subject><subject>Asymptotic properties</subject><subject>AVERAGING TECHNIQUE</subject><subject>BOUNDS</subject><subject>Classificació AMS</subject><subject>Constants</subject><subject>Elements finits, Mètode dels</subject><subject>EQUILIBRIUM</subject><subject>Error analysis</subject><subject>Error bounding</subject><subject>Errors</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Explicit residual error estimator</subject><subject>FINITE-ELEMENT-METHOD</subject><subject>IN FIELD-EQUATIONS</subject><subject>Matemàtiques i estadística</subject><subject>MECHANICS</subject><subject>Mètodes en elements finits</subject><subject>Norms</subject><subject>Numerical analysis</subject><subject>Recovery techniques</subject><subject>STRESS-FIELDS</subject><subject>SUPERCONVERGENT PATCH RECOVERY</subject><subject>Upper bounds</subject><subject>Àrees temàtiques de la UPC</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9UE1LAzEQDaJgrf4Ab3v0snWS_UiCp1LUCgUveg7pdCop-1GTbbH_3ikV9GSYMJMw782bJ8SthIkEWd9vJtj6iQJZTUByFGdiJI22uZKFORcjgLLKtVHVpbhKaQN8jFQjMZ9mkbDfUzzk9LVtAoYhoxj7mFEaQusHrkKXUUfx45B1fWyzNX81oSPPPY3nLsYcrsXF2jeJbn7yWLw_Pb7N5vni9fllNl3kWFblkHtNNVRo5VqCNQDkqV6aolzh0i69QcuqagMFelN6kkheg0WwClVRaVsWYyFPvJh26Fg7RfSD6334fRyvAq2cshKYbCzuTpht7D93vJdrQ0JqGt9Rv0tO8gxdGa3NH_rYpxRp7baRXYgHJ8EdnXYbx067o9MOJEfBmIcThnjvfaDoEgbqkFaBJQ1u1Yd_0N-NBIXv</recordid><startdate>20150415</startdate><enddate>20150415</enddate><creator>Nadal, E.</creator><creator>Díez, P.</creator><creator>Ródenas, J.J.</creator><creator>Tur, M.</creator><creator>Fuenmayor, F.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0002-2808-298X</orcidid></search><sort><creationdate>20150415</creationdate><title>A recovery-explicit error estimator in energy norm for linear elasticity</title><author>Nadal, E. ; Díez, P. ; Ródenas, J.J. ; Tur, M. ; Fuenmayor, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-a7e605c91f109800eae6b834dcb9ba8c98126803ca84ae1cea709c092c2357943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>65 Numerical analysis</topic><topic>65G Error analysis and interval analysis</topic><topic>A-POSTERIORI ERROR</topic><topic>Anàlisi numèrica</topic><topic>Asymptotic properties</topic><topic>AVERAGING TECHNIQUE</topic><topic>BOUNDS</topic><topic>Classificació AMS</topic><topic>Constants</topic><topic>Elements finits, Mètode dels</topic><topic>EQUILIBRIUM</topic><topic>Error analysis</topic><topic>Error bounding</topic><topic>Errors</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Explicit residual error estimator</topic><topic>FINITE-ELEMENT-METHOD</topic><topic>IN FIELD-EQUATIONS</topic><topic>Matemàtiques i estadística</topic><topic>MECHANICS</topic><topic>Mètodes en elements finits</topic><topic>Norms</topic><topic>Numerical analysis</topic><topic>Recovery techniques</topic><topic>STRESS-FIELDS</topic><topic>SUPERCONVERGENT PATCH RECOVERY</topic><topic>Upper bounds</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadal, E.</creatorcontrib><creatorcontrib>Díez, P.</creatorcontrib><creatorcontrib>Ródenas, J.J.</creatorcontrib><creatorcontrib>Tur, M.</creatorcontrib><creatorcontrib>Fuenmayor, F.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadal, E.</au><au>Díez, P.</au><au>Ródenas, J.J.</au><au>Tur, M.</au><au>Fuenmayor, F.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A recovery-explicit error estimator in energy norm for linear elasticity</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2015-04-15</date><risdate>2015</risdate><volume>287</volume><spage>172</spage><epage>190</epage><pages>172-190</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Significant research effort has been devoted to produce one-sided error estimates for Finite Element Analyses, in particular to provide upper bounds of the actual error. Typically, this has been achieved using residual-type estimates. One of the most popular and simpler (in terms of implementation) techniques used in commercial codes is the recovery-based error estimator. This technique produces accurate estimations of the exact error but is not designed to naturally produce upper bounds of the error in energy norm. Some attempts to remedy this situation provide bounds depending on unknown constants. Here, a new step towards obtaining error bounds from the recovery-based estimates is proposed. The idea is (1) to use a locally equilibrated recovery technique to obtain an accurate estimation of the exact error, (2) to add an explicit-type error bound of the lack of equilibrium of the recovered stresses in order to guarantee a bound of the actual error and (3) to efficiently and accurately evaluate the constants appearing in the bounding expressions, thus providing asymptotic bounds. The numerical tests with h-adaptive refinement process show that the bounding property holds even for coarse meshes, providing upper bounds in practical applications.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2015.01.013</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2808-298X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2015-04, Vol.287, p.172-190 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_291080 |
source | Recercat; Elsevier ScienceDirect Journals |
subjects | 65 Numerical analysis 65G Error analysis and interval analysis A-POSTERIORI ERROR Anàlisi numèrica Asymptotic properties AVERAGING TECHNIQUE BOUNDS Classificació AMS Constants Elements finits, Mètode dels EQUILIBRIUM Error analysis Error bounding Errors Estimates Estimators Explicit residual error estimator FINITE-ELEMENT-METHOD IN FIELD-EQUATIONS Matemàtiques i estadística MECHANICS Mètodes en elements finits Norms Numerical analysis Recovery techniques STRESS-FIELDS SUPERCONVERGENT PATCH RECOVERY Upper bounds Àrees temàtiques de la UPC |
title | A recovery-explicit error estimator in energy norm for linear elasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20recovery-explicit%20error%20estimator%20in%20energy%20norm%20for%20linear%20elasticity&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Nadal,%20E.&rft.date=2015-04-15&rft.volume=287&rft.spage=172&rft.epage=190&rft.pages=172-190&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2015.01.013&rft_dat=%3Cproquest_csuc_%3E1709758778%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709758778&rft_id=info:pmid/&rft_els_id=S0045782515000262&rfr_iscdi=true |