A recovery-explicit error estimator in energy norm for linear elasticity

Significant research effort has been devoted to produce one-sided error estimates for Finite Element Analyses, in particular to provide upper bounds of the actual error. Typically, this has been achieved using residual-type estimates. One of the most popular and simpler (in terms of implementation)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2015-04, Vol.287, p.172-190
Hauptverfasser: Nadal, E., Díez, P., Ródenas, J.J., Tur, M., Fuenmayor, F.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue
container_start_page 172
container_title Computer methods in applied mechanics and engineering
container_volume 287
creator Nadal, E.
Díez, P.
Ródenas, J.J.
Tur, M.
Fuenmayor, F.J.
description Significant research effort has been devoted to produce one-sided error estimates for Finite Element Analyses, in particular to provide upper bounds of the actual error. Typically, this has been achieved using residual-type estimates. One of the most popular and simpler (in terms of implementation) techniques used in commercial codes is the recovery-based error estimator. This technique produces accurate estimations of the exact error but is not designed to naturally produce upper bounds of the error in energy norm. Some attempts to remedy this situation provide bounds depending on unknown constants. Here, a new step towards obtaining error bounds from the recovery-based estimates is proposed. The idea is (1) to use a locally equilibrated recovery technique to obtain an accurate estimation of the exact error, (2) to add an explicit-type error bound of the lack of equilibrium of the recovered stresses in order to guarantee a bound of the actual error and (3) to efficiently and accurately evaluate the constants appearing in the bounding expressions, thus providing asymptotic bounds. The numerical tests with h-adaptive refinement process show that the bounding property holds even for coarse meshes, providing upper bounds in practical applications.
doi_str_mv 10.1016/j.cma.2015.01.013
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_291080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782515000262</els_id><sourcerecordid>1709758778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-a7e605c91f109800eae6b834dcb9ba8c98126803ca84ae1cea709c092c2357943</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4Ab3v0snWS_UiCp1LUCgUveg7pdCop-1GTbbH_3ikV9GSYMJMw782bJ8SthIkEWd9vJtj6iQJZTUByFGdiJI22uZKFORcjgLLKtVHVpbhKaQN8jFQjMZ9mkbDfUzzk9LVtAoYhoxj7mFEaQusHrkKXUUfx45B1fWyzNX81oSPPPY3nLsYcrsXF2jeJbn7yWLw_Pb7N5vni9fllNl3kWFblkHtNNVRo5VqCNQDkqV6aolzh0i69QcuqagMFelN6kkheg0WwClVRaVsWYyFPvJh26Fg7RfSD6334fRyvAq2cshKYbCzuTpht7D93vJdrQ0JqGt9Rv0tO8gxdGa3NH_rYpxRp7baRXYgHJ8EdnXYbx067o9MOJEfBmIcThnjvfaDoEgbqkFaBJQ1u1Yd_0N-NBIXv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709758778</pqid></control><display><type>article</type><title>A recovery-explicit error estimator in energy norm for linear elasticity</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Nadal, E. ; Díez, P. ; Ródenas, J.J. ; Tur, M. ; Fuenmayor, F.J.</creator><creatorcontrib>Nadal, E. ; Díez, P. ; Ródenas, J.J. ; Tur, M. ; Fuenmayor, F.J.</creatorcontrib><description>Significant research effort has been devoted to produce one-sided error estimates for Finite Element Analyses, in particular to provide upper bounds of the actual error. Typically, this has been achieved using residual-type estimates. One of the most popular and simpler (in terms of implementation) techniques used in commercial codes is the recovery-based error estimator. This technique produces accurate estimations of the exact error but is not designed to naturally produce upper bounds of the error in energy norm. Some attempts to remedy this situation provide bounds depending on unknown constants. Here, a new step towards obtaining error bounds from the recovery-based estimates is proposed. The idea is (1) to use a locally equilibrated recovery technique to obtain an accurate estimation of the exact error, (2) to add an explicit-type error bound of the lack of equilibrium of the recovered stresses in order to guarantee a bound of the actual error and (3) to efficiently and accurately evaluate the constants appearing in the bounding expressions, thus providing asymptotic bounds. The numerical tests with h-adaptive refinement process show that the bounding property holds even for coarse meshes, providing upper bounds in practical applications.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2015.01.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>65 Numerical analysis ; 65G Error analysis and interval analysis ; A-POSTERIORI ERROR ; Anàlisi numèrica ; Asymptotic properties ; AVERAGING TECHNIQUE ; BOUNDS ; Classificació AMS ; Constants ; Elements finits, Mètode dels ; EQUILIBRIUM ; Error analysis ; Error bounding ; Errors ; Estimates ; Estimators ; Explicit residual error estimator ; FINITE-ELEMENT-METHOD ; IN FIELD-EQUATIONS ; Matemàtiques i estadística ; MECHANICS ; Mètodes en elements finits ; Norms ; Numerical analysis ; Recovery techniques ; STRESS-FIELDS ; SUPERCONVERGENT PATCH RECOVERY ; Upper bounds ; Àrees temàtiques de la UPC</subject><ispartof>Computer methods in applied mechanics and engineering, 2015-04, Vol.287, p.172-190</ispartof><rights>2015 Elsevier B.V.</rights><rights>info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-a7e605c91f109800eae6b834dcb9ba8c98126803ca84ae1cea709c092c2357943</citedby><cites>FETCH-LOGICAL-c454t-a7e605c91f109800eae6b834dcb9ba8c98126803ca84ae1cea709c092c2357943</cites><orcidid>0000-0002-2808-298X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782515000262$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nadal, E.</creatorcontrib><creatorcontrib>Díez, P.</creatorcontrib><creatorcontrib>Ródenas, J.J.</creatorcontrib><creatorcontrib>Tur, M.</creatorcontrib><creatorcontrib>Fuenmayor, F.J.</creatorcontrib><title>A recovery-explicit error estimator in energy norm for linear elasticity</title><title>Computer methods in applied mechanics and engineering</title><description>Significant research effort has been devoted to produce one-sided error estimates for Finite Element Analyses, in particular to provide upper bounds of the actual error. Typically, this has been achieved using residual-type estimates. One of the most popular and simpler (in terms of implementation) techniques used in commercial codes is the recovery-based error estimator. This technique produces accurate estimations of the exact error but is not designed to naturally produce upper bounds of the error in energy norm. Some attempts to remedy this situation provide bounds depending on unknown constants. Here, a new step towards obtaining error bounds from the recovery-based estimates is proposed. The idea is (1) to use a locally equilibrated recovery technique to obtain an accurate estimation of the exact error, (2) to add an explicit-type error bound of the lack of equilibrium of the recovered stresses in order to guarantee a bound of the actual error and (3) to efficiently and accurately evaluate the constants appearing in the bounding expressions, thus providing asymptotic bounds. The numerical tests with h-adaptive refinement process show that the bounding property holds even for coarse meshes, providing upper bounds in practical applications.</description><subject>65 Numerical analysis</subject><subject>65G Error analysis and interval analysis</subject><subject>A-POSTERIORI ERROR</subject><subject>Anàlisi numèrica</subject><subject>Asymptotic properties</subject><subject>AVERAGING TECHNIQUE</subject><subject>BOUNDS</subject><subject>Classificació AMS</subject><subject>Constants</subject><subject>Elements finits, Mètode dels</subject><subject>EQUILIBRIUM</subject><subject>Error analysis</subject><subject>Error bounding</subject><subject>Errors</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Explicit residual error estimator</subject><subject>FINITE-ELEMENT-METHOD</subject><subject>IN FIELD-EQUATIONS</subject><subject>Matemàtiques i estadística</subject><subject>MECHANICS</subject><subject>Mètodes en elements finits</subject><subject>Norms</subject><subject>Numerical analysis</subject><subject>Recovery techniques</subject><subject>STRESS-FIELDS</subject><subject>SUPERCONVERGENT PATCH RECOVERY</subject><subject>Upper bounds</subject><subject>Àrees temàtiques de la UPC</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9UE1LAzEQDaJgrf4Ab3v0snWS_UiCp1LUCgUveg7pdCop-1GTbbH_3ikV9GSYMJMw782bJ8SthIkEWd9vJtj6iQJZTUByFGdiJI22uZKFORcjgLLKtVHVpbhKaQN8jFQjMZ9mkbDfUzzk9LVtAoYhoxj7mFEaQusHrkKXUUfx45B1fWyzNX81oSPPPY3nLsYcrsXF2jeJbn7yWLw_Pb7N5vni9fllNl3kWFblkHtNNVRo5VqCNQDkqV6aolzh0i69QcuqagMFelN6kkheg0WwClVRaVsWYyFPvJh26Fg7RfSD6334fRyvAq2cshKYbCzuTpht7D93vJdrQ0JqGt9Rv0tO8gxdGa3NH_rYpxRp7baRXYgHJ8EdnXYbx067o9MOJEfBmIcThnjvfaDoEgbqkFaBJQ1u1Yd_0N-NBIXv</recordid><startdate>20150415</startdate><enddate>20150415</enddate><creator>Nadal, E.</creator><creator>Díez, P.</creator><creator>Ródenas, J.J.</creator><creator>Tur, M.</creator><creator>Fuenmayor, F.J.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0002-2808-298X</orcidid></search><sort><creationdate>20150415</creationdate><title>A recovery-explicit error estimator in energy norm for linear elasticity</title><author>Nadal, E. ; Díez, P. ; Ródenas, J.J. ; Tur, M. ; Fuenmayor, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-a7e605c91f109800eae6b834dcb9ba8c98126803ca84ae1cea709c092c2357943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>65 Numerical analysis</topic><topic>65G Error analysis and interval analysis</topic><topic>A-POSTERIORI ERROR</topic><topic>Anàlisi numèrica</topic><topic>Asymptotic properties</topic><topic>AVERAGING TECHNIQUE</topic><topic>BOUNDS</topic><topic>Classificació AMS</topic><topic>Constants</topic><topic>Elements finits, Mètode dels</topic><topic>EQUILIBRIUM</topic><topic>Error analysis</topic><topic>Error bounding</topic><topic>Errors</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Explicit residual error estimator</topic><topic>FINITE-ELEMENT-METHOD</topic><topic>IN FIELD-EQUATIONS</topic><topic>Matemàtiques i estadística</topic><topic>MECHANICS</topic><topic>Mètodes en elements finits</topic><topic>Norms</topic><topic>Numerical analysis</topic><topic>Recovery techniques</topic><topic>STRESS-FIELDS</topic><topic>SUPERCONVERGENT PATCH RECOVERY</topic><topic>Upper bounds</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadal, E.</creatorcontrib><creatorcontrib>Díez, P.</creatorcontrib><creatorcontrib>Ródenas, J.J.</creatorcontrib><creatorcontrib>Tur, M.</creatorcontrib><creatorcontrib>Fuenmayor, F.J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadal, E.</au><au>Díez, P.</au><au>Ródenas, J.J.</au><au>Tur, M.</au><au>Fuenmayor, F.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A recovery-explicit error estimator in energy norm for linear elasticity</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2015-04-15</date><risdate>2015</risdate><volume>287</volume><spage>172</spage><epage>190</epage><pages>172-190</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Significant research effort has been devoted to produce one-sided error estimates for Finite Element Analyses, in particular to provide upper bounds of the actual error. Typically, this has been achieved using residual-type estimates. One of the most popular and simpler (in terms of implementation) techniques used in commercial codes is the recovery-based error estimator. This technique produces accurate estimations of the exact error but is not designed to naturally produce upper bounds of the error in energy norm. Some attempts to remedy this situation provide bounds depending on unknown constants. Here, a new step towards obtaining error bounds from the recovery-based estimates is proposed. The idea is (1) to use a locally equilibrated recovery technique to obtain an accurate estimation of the exact error, (2) to add an explicit-type error bound of the lack of equilibrium of the recovered stresses in order to guarantee a bound of the actual error and (3) to efficiently and accurately evaluate the constants appearing in the bounding expressions, thus providing asymptotic bounds. The numerical tests with h-adaptive refinement process show that the bounding property holds even for coarse meshes, providing upper bounds in practical applications.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2015.01.013</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2808-298X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2015-04, Vol.287, p.172-190
issn 0045-7825
1879-2138
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_291080
source Recercat; Elsevier ScienceDirect Journals
subjects 65 Numerical analysis
65G Error analysis and interval analysis
A-POSTERIORI ERROR
Anàlisi numèrica
Asymptotic properties
AVERAGING TECHNIQUE
BOUNDS
Classificació AMS
Constants
Elements finits, Mètode dels
EQUILIBRIUM
Error analysis
Error bounding
Errors
Estimates
Estimators
Explicit residual error estimator
FINITE-ELEMENT-METHOD
IN FIELD-EQUATIONS
Matemàtiques i estadística
MECHANICS
Mètodes en elements finits
Norms
Numerical analysis
Recovery techniques
STRESS-FIELDS
SUPERCONVERGENT PATCH RECOVERY
Upper bounds
Àrees temàtiques de la UPC
title A recovery-explicit error estimator in energy norm for linear elasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20recovery-explicit%20error%20estimator%20in%20energy%20norm%20for%20linear%20elasticity&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Nadal,%20E.&rft.date=2015-04-15&rft.volume=287&rft.spage=172&rft.epage=190&rft.pages=172-190&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2015.01.013&rft_dat=%3Cproquest_csuc_%3E1709758778%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709758778&rft_id=info:pmid/&rft_els_id=S0045782515000262&rfr_iscdi=true