DaSH: A benchmark suite for hybrid dataflow and shared memory programming models

•Three important properties of DaSH are breadth, depth and portability.•The main strength of dataflow is the ability to eliminate unnecessary barriers.•Dataflow and shared memory implementations have comparable code complexity.•Dataflow implementations can improve performance of shared memory progra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parallel computing 2015-06, Vol.45, p.18-48
Hauptverfasser: Gajinov, Vladimir, Stipić, Srdjan, Erić, Igor, Unsal, Osman S., Ayguadé, Eduard, Cristal, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue
container_start_page 18
container_title Parallel computing
container_volume 45
creator Gajinov, Vladimir
Stipić, Srdjan
Erić, Igor
Unsal, Osman S.
Ayguadé, Eduard
Cristal, Adrian
description •Three important properties of DaSH are breadth, depth and portability.•The main strength of dataflow is the ability to eliminate unnecessary barriers.•Dataflow and shared memory implementations have comparable code complexity.•Dataflow implementations can improve performance of shared memory programs.•No single parallel programming paradigm is suitable for all DaSH benchmarks. The current trend in development of parallel programming models is to combine different well established models into a single programming model in order to support efficient implementation of a wide range of real world applications. The dataflow model has particularly managed to recapture the interest of the research community due to its ability to express parallelism efficiently. Thus, a number of recently proposed hybrid parallel programming models combine dataflow and traditional shared memory models. Their findings have influenced the introduction of task dependency in the OpenMP 4.0 standard. This article presents DaSH – the first comprehensive benchmark suite for hybrid dataflow and shared memory programming models. DaSH features 11 benchmarks, each representing one of the Berkeley dwarfs that capture patterns of communication and computation common to a wide range of emerging applications. DaSH also includes sequential and shared-memory implementations based on OpenMP and Intel TBB to facilitate easy comparison between hybrid dataflow implementations and traditional shared memory implementations based on work-sharing and/or tasks. Finally, we use DaSH to evaluate three different hybrid dataflow models, identify their advantages and shortcomings, and motivate further research on their characteristics.
doi_str_mv 10.1016/j.parco.2015.03.005
format Article
fullrecord <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_288614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167819115000496</els_id><sourcerecordid>oai_recercat_cat_2072_288614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-9d19de88fc5f8fa2eb213f3628fdfd8048e16ee672d769bbc5093192a62ed4f23</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMoWKtP4E1eYNccdrNZwQuphwoFBfU6ZJNJm9ptSrJV-vamWvDOi2EYmG-G_0PokpKSEiquluVGRxNKRmhdEl4SUh-hEZUNKxrOxTEa5a2mkLSlp-gspSUhRFSSjNDLnX6dXuNb3MHaLHodP3Da-gGwCxEvdl30Fls9aLcKX1ivLU4LHcHiHvoQd3gTwzzqvvfrOe6DhVU6RydOrxJcHPoYvT_cv02mxez58WlyOytMReuhaC1tLUjpTO2k0ww6RrnjgklnnZWkkkAFgGiYbUTbdaYmLact04KBrRzjY0R_75q0NSqCgWj0oIL2f8O-GGmYYlIKWmWGH5gYUorg1Cb6nHmnKFF7kWqpfkSqvUhFuMoiM3XzS-V08OkhqmR8tgXW50-DssH_y38DRp19nQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DaSH: A benchmark suite for hybrid dataflow and shared memory programming models</title><source>Elsevier ScienceDirect Journals Complete</source><source>Recercat</source><creator>Gajinov, Vladimir ; Stipić, Srdjan ; Erić, Igor ; Unsal, Osman S. ; Ayguadé, Eduard ; Cristal, Adrian</creator><creatorcontrib>Gajinov, Vladimir ; Stipić, Srdjan ; Erić, Igor ; Unsal, Osman S. ; Ayguadé, Eduard ; Cristal, Adrian</creatorcontrib><description>•Three important properties of DaSH are breadth, depth and portability.•The main strength of dataflow is the ability to eliminate unnecessary barriers.•Dataflow and shared memory implementations have comparable code complexity.•Dataflow implementations can improve performance of shared memory programs.•No single parallel programming paradigm is suitable for all DaSH benchmarks. The current trend in development of parallel programming models is to combine different well established models into a single programming model in order to support efficient implementation of a wide range of real world applications. The dataflow model has particularly managed to recapture the interest of the research community due to its ability to express parallelism efficiently. Thus, a number of recently proposed hybrid parallel programming models combine dataflow and traditional shared memory models. Their findings have influenced the introduction of task dependency in the OpenMP 4.0 standard. This article presents DaSH – the first comprehensive benchmark suite for hybrid dataflow and shared memory programming models. DaSH features 11 benchmarks, each representing one of the Berkeley dwarfs that capture patterns of communication and computation common to a wide range of emerging applications. DaSH also includes sequential and shared-memory implementations based on OpenMP and Intel TBB to facilitate easy comparison between hybrid dataflow implementations and traditional shared memory implementations based on work-sharing and/or tasks. Finally, we use DaSH to evaluate three different hybrid dataflow models, identify their advantages and shortcomings, and motivate further research on their characteristics.</description><identifier>ISSN: 0167-8191</identifier><identifier>EISSN: 1872-7336</identifier><identifier>DOI: 10.1016/j.parco.2015.03.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithm ; Architectures ; Arquitectura de computadors ; Arquitectures paral·leles ; Benchmark suite ; Dataflow ; Informàtica ; Parallel programming (Computer science) ; Programació en paral·lel (Informàtica) ; Programming model ; Shared memory ; Transactional memory ; Àrees temàtiques de la UPC</subject><ispartof>Parallel computing, 2015-06, Vol.45, p.18-48</ispartof><rights>2015 Elsevier B.V.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-9d19de88fc5f8fa2eb213f3628fdfd8048e16ee672d769bbc5093192a62ed4f23</citedby><cites>FETCH-LOGICAL-c415t-9d19de88fc5f8fa2eb213f3628fdfd8048e16ee672d769bbc5093192a62ed4f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.parco.2015.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,26974,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gajinov, Vladimir</creatorcontrib><creatorcontrib>Stipić, Srdjan</creatorcontrib><creatorcontrib>Erić, Igor</creatorcontrib><creatorcontrib>Unsal, Osman S.</creatorcontrib><creatorcontrib>Ayguadé, Eduard</creatorcontrib><creatorcontrib>Cristal, Adrian</creatorcontrib><title>DaSH: A benchmark suite for hybrid dataflow and shared memory programming models</title><title>Parallel computing</title><description>•Three important properties of DaSH are breadth, depth and portability.•The main strength of dataflow is the ability to eliminate unnecessary barriers.•Dataflow and shared memory implementations have comparable code complexity.•Dataflow implementations can improve performance of shared memory programs.•No single parallel programming paradigm is suitable for all DaSH benchmarks. The current trend in development of parallel programming models is to combine different well established models into a single programming model in order to support efficient implementation of a wide range of real world applications. The dataflow model has particularly managed to recapture the interest of the research community due to its ability to express parallelism efficiently. Thus, a number of recently proposed hybrid parallel programming models combine dataflow and traditional shared memory models. Their findings have influenced the introduction of task dependency in the OpenMP 4.0 standard. This article presents DaSH – the first comprehensive benchmark suite for hybrid dataflow and shared memory programming models. DaSH features 11 benchmarks, each representing one of the Berkeley dwarfs that capture patterns of communication and computation common to a wide range of emerging applications. DaSH also includes sequential and shared-memory implementations based on OpenMP and Intel TBB to facilitate easy comparison between hybrid dataflow implementations and traditional shared memory implementations based on work-sharing and/or tasks. Finally, we use DaSH to evaluate three different hybrid dataflow models, identify their advantages and shortcomings, and motivate further research on their characteristics.</description><subject>Algorithm</subject><subject>Architectures</subject><subject>Arquitectura de computadors</subject><subject>Arquitectures paral·leles</subject><subject>Benchmark suite</subject><subject>Dataflow</subject><subject>Informàtica</subject><subject>Parallel programming (Computer science)</subject><subject>Programació en paral·lel (Informàtica)</subject><subject>Programming model</subject><subject>Shared memory</subject><subject>Transactional memory</subject><subject>Àrees temàtiques de la UPC</subject><issn>0167-8191</issn><issn>1872-7336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kNtKAzEQhoMoWKtP4E1eYNccdrNZwQuphwoFBfU6ZJNJm9ptSrJV-vamWvDOi2EYmG-G_0PokpKSEiquluVGRxNKRmhdEl4SUh-hEZUNKxrOxTEa5a2mkLSlp-gspSUhRFSSjNDLnX6dXuNb3MHaLHodP3Da-gGwCxEvdl30Fls9aLcKX1ivLU4LHcHiHvoQd3gTwzzqvvfrOe6DhVU6RydOrxJcHPoYvT_cv02mxez58WlyOytMReuhaC1tLUjpTO2k0ww6RrnjgklnnZWkkkAFgGiYbUTbdaYmLact04KBrRzjY0R_75q0NSqCgWj0oIL2f8O-GGmYYlIKWmWGH5gYUorg1Cb6nHmnKFF7kWqpfkSqvUhFuMoiM3XzS-V08OkhqmR8tgXW50-DssH_y38DRp19nQ</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Gajinov, Vladimir</creator><creator>Stipić, Srdjan</creator><creator>Erić, Igor</creator><creator>Unsal, Osman S.</creator><creator>Ayguadé, Eduard</creator><creator>Cristal, Adrian</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20150601</creationdate><title>DaSH: A benchmark suite for hybrid dataflow and shared memory programming models</title><author>Gajinov, Vladimir ; Stipić, Srdjan ; Erić, Igor ; Unsal, Osman S. ; Ayguadé, Eduard ; Cristal, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-9d19de88fc5f8fa2eb213f3628fdfd8048e16ee672d769bbc5093192a62ed4f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm</topic><topic>Architectures</topic><topic>Arquitectura de computadors</topic><topic>Arquitectures paral·leles</topic><topic>Benchmark suite</topic><topic>Dataflow</topic><topic>Informàtica</topic><topic>Parallel programming (Computer science)</topic><topic>Programació en paral·lel (Informàtica)</topic><topic>Programming model</topic><topic>Shared memory</topic><topic>Transactional memory</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gajinov, Vladimir</creatorcontrib><creatorcontrib>Stipić, Srdjan</creatorcontrib><creatorcontrib>Erić, Igor</creatorcontrib><creatorcontrib>Unsal, Osman S.</creatorcontrib><creatorcontrib>Ayguadé, Eduard</creatorcontrib><creatorcontrib>Cristal, Adrian</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Parallel computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gajinov, Vladimir</au><au>Stipić, Srdjan</au><au>Erić, Igor</au><au>Unsal, Osman S.</au><au>Ayguadé, Eduard</au><au>Cristal, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DaSH: A benchmark suite for hybrid dataflow and shared memory programming models</atitle><jtitle>Parallel computing</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>45</volume><spage>18</spage><epage>48</epage><pages>18-48</pages><issn>0167-8191</issn><eissn>1872-7336</eissn><abstract>•Three important properties of DaSH are breadth, depth and portability.•The main strength of dataflow is the ability to eliminate unnecessary barriers.•Dataflow and shared memory implementations have comparable code complexity.•Dataflow implementations can improve performance of shared memory programs.•No single parallel programming paradigm is suitable for all DaSH benchmarks. The current trend in development of parallel programming models is to combine different well established models into a single programming model in order to support efficient implementation of a wide range of real world applications. The dataflow model has particularly managed to recapture the interest of the research community due to its ability to express parallelism efficiently. Thus, a number of recently proposed hybrid parallel programming models combine dataflow and traditional shared memory models. Their findings have influenced the introduction of task dependency in the OpenMP 4.0 standard. This article presents DaSH – the first comprehensive benchmark suite for hybrid dataflow and shared memory programming models. DaSH features 11 benchmarks, each representing one of the Berkeley dwarfs that capture patterns of communication and computation common to a wide range of emerging applications. DaSH also includes sequential and shared-memory implementations based on OpenMP and Intel TBB to facilitate easy comparison between hybrid dataflow implementations and traditional shared memory implementations based on work-sharing and/or tasks. Finally, we use DaSH to evaluate three different hybrid dataflow models, identify their advantages and shortcomings, and motivate further research on their characteristics.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.parco.2015.03.005</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8191
ispartof Parallel computing, 2015-06, Vol.45, p.18-48
issn 0167-8191
1872-7336
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_288614
source Elsevier ScienceDirect Journals Complete; Recercat
subjects Algorithm
Architectures
Arquitectura de computadors
Arquitectures paral·leles
Benchmark suite
Dataflow
Informàtica
Parallel programming (Computer science)
Programació en paral·lel (Informàtica)
Programming model
Shared memory
Transactional memory
Àrees temàtiques de la UPC
title DaSH: A benchmark suite for hybrid dataflow and shared memory programming models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A36%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DaSH:%20A%20benchmark%20suite%20for%20hybrid%20dataflow%20and%20shared%20memory%20programming%20models&rft.jtitle=Parallel%20computing&rft.au=Gajinov,%20Vladimir&rft.date=2015-06-01&rft.volume=45&rft.spage=18&rft.epage=48&rft.pages=18-48&rft.issn=0167-8191&rft.eissn=1872-7336&rft_id=info:doi/10.1016/j.parco.2015.03.005&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_288614%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167819115000496&rfr_iscdi=true