Natural formations at the Earth–Moon triangular point in perturbed restricted problems

Previous studies for small formation flying dynamics about triangular libration points have determined the existence of regions of zero and Minimum Relative Radial Acceleration with respect to the nominal trajectory, that prevent from the expansion or contraction of the constellation. However, these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 2015-07, Vol.56 (1), p.144-162
Hauptverfasser: Salazar, F.J.T., Winter, O.C., Macau, E.E., Masdemont, J.J., Gómez, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 1
container_start_page 144
container_title Advances in space research
container_volume 56
creator Salazar, F.J.T.
Winter, O.C.
Macau, E.E.
Masdemont, J.J.
Gómez, G.
description Previous studies for small formation flying dynamics about triangular libration points have determined the existence of regions of zero and Minimum Relative Radial Acceleration with respect to the nominal trajectory, that prevent from the expansion or contraction of the constellation. However, these studies only considered the gravitational force of the Earth and the Moon using the Circular Restricted Three Body Problem (CRTBP) scenario. Although the CRTBP model is a good approximation for the dynamics of spacecraft in the Earth–Moon system, the nominal trajectories around equilateral libration points are strongly affected when the primary orbit eccentricity and solar gravitational force are considered. In this manner, the goal of this work is the analysis of the best regions to place a formation that is flying close a bounded solution around L4, taking into account the Moon’s eccentricity and Sun’s gravity. This model is not only more realistic for practical engineering applications but permits to determine more accurately the fuel consumption to maintain the geometry of the formation.
doi_str_mv 10.1016/j.asr.2015.03.028
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_288223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273117715002306</els_id><sourcerecordid>1770302133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-67d6c8841dc22c832b072af7f4f5b63a018f830c1e7dac2dec276dc468ec130b3</originalsourceid><addsrcrecordid>eNqNkcGKFDEQhoO44LjrA3jL0Uu3Vcl0J4snWdZVWPWi4C2kq6vdDD2dMUkL3vYd9g19EjOMoCfxUKQC9RUf9QvxHKFFwP7lrvU5tQqwa0G3oOwjsUFrLhu83NrHYgPK6AbRmCfiac47AFTGwEZ8-eDLmvwsp5j2voS4ZOmLLHcsr30qdz_vH97HuMiSgl--rrNP8hDDUmRY5IFTZQceZeJcB6jU9pDiMPM-X4izyc-Zn_1-z8XnN9efrt42tx9v3l29vm2oQ1ua3ow9WbvFkZQiq9UARvnJTNupG3rtAe1kNRCyGT2pkUmZfqRtb5lQw6DPBZ72Ul7JJSZO5IuLPvz5HEvVvU5Zq5SuzIsTU2W_rdXd7UMmnme_cFyzq2cCDQr1_4xqVf066P4ySTHnxJM7pLD36YdDcMeQ3M7VkNwxJAfa1ZAq8-rEcD3R98DJZQq8EI-h2hc3xvAP-hf_55uc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732830505</pqid></control><display><type>article</type><title>Natural formations at the Earth–Moon triangular point in perturbed restricted problems</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Recercat</source><creator>Salazar, F.J.T. ; Winter, O.C. ; Macau, E.E. ; Masdemont, J.J. ; Gómez, G.</creator><creatorcontrib>Salazar, F.J.T. ; Winter, O.C. ; Macau, E.E. ; Masdemont, J.J. ; Gómez, G.</creatorcontrib><description>Previous studies for small formation flying dynamics about triangular libration points have determined the existence of regions of zero and Minimum Relative Radial Acceleration with respect to the nominal trajectory, that prevent from the expansion or contraction of the constellation. However, these studies only considered the gravitational force of the Earth and the Moon using the Circular Restricted Three Body Problem (CRTBP) scenario. Although the CRTBP model is a good approximation for the dynamics of spacecraft in the Earth–Moon system, the nominal trajectories around equilateral libration points are strongly affected when the primary orbit eccentricity and solar gravitational force are considered. In this manner, the goal of this work is the analysis of the best regions to place a formation that is flying close a bounded solution around L4, taking into account the Moon’s eccentricity and Sun’s gravity. This model is not only more realistic for practical engineering applications but permits to determine more accurately the fuel consumption to maintain the geometry of the formation.</description><identifier>ISSN: 0273-1177</identifier><identifier>EISSN: 1879-1948</identifier><identifier>DOI: 10.1016/j.asr.2015.03.028</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial satellites ; Bicircular Four Body Problem ; bodies ; Control systems ; Dynamical systems ; Dynamics ; Earth (Planet) ; Earth-Moon system ; Eccentricity ; Elliptic Restricted Three Body Problem ; Equilateral libration point ; evolution ; formation flight ; Formation flight of satellites ; Formations ; Gravitation ; libration point ; Libration points ; Lluna ; Matemàtica aplicada a les ciències ; Matemàtiques i estadística ; mission ; Moon ; motion ; Orbital mechanics ; orbits ; Satèl·lits artificials ; stability ; system ; Terra (Planeta) ; Trajectories ; Zero Relative Radial Acceleration ; Àrees temàtiques de la UPC</subject><ispartof>Advances in space research, 2015-07, Vol.56 (1), p.144-162</ispartof><rights>2015 COSPAR</rights><rights>info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-67d6c8841dc22c832b072af7f4f5b63a018f830c1e7dac2dec276dc468ec130b3</citedby><cites>FETCH-LOGICAL-c518t-67d6c8841dc22c832b072af7f4f5b63a018f830c1e7dac2dec276dc468ec130b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.asr.2015.03.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,26974,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Salazar, F.J.T.</creatorcontrib><creatorcontrib>Winter, O.C.</creatorcontrib><creatorcontrib>Macau, E.E.</creatorcontrib><creatorcontrib>Masdemont, J.J.</creatorcontrib><creatorcontrib>Gómez, G.</creatorcontrib><title>Natural formations at the Earth–Moon triangular point in perturbed restricted problems</title><title>Advances in space research</title><description>Previous studies for small formation flying dynamics about triangular libration points have determined the existence of regions of zero and Minimum Relative Radial Acceleration with respect to the nominal trajectory, that prevent from the expansion or contraction of the constellation. However, these studies only considered the gravitational force of the Earth and the Moon using the Circular Restricted Three Body Problem (CRTBP) scenario. Although the CRTBP model is a good approximation for the dynamics of spacecraft in the Earth–Moon system, the nominal trajectories around equilateral libration points are strongly affected when the primary orbit eccentricity and solar gravitational force are considered. In this manner, the goal of this work is the analysis of the best regions to place a formation that is flying close a bounded solution around L4, taking into account the Moon’s eccentricity and Sun’s gravity. This model is not only more realistic for practical engineering applications but permits to determine more accurately the fuel consumption to maintain the geometry of the formation.</description><subject>Artificial satellites</subject><subject>Bicircular Four Body Problem</subject><subject>bodies</subject><subject>Control systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Earth (Planet)</subject><subject>Earth-Moon system</subject><subject>Eccentricity</subject><subject>Elliptic Restricted Three Body Problem</subject><subject>Equilateral libration point</subject><subject>evolution</subject><subject>formation flight</subject><subject>Formation flight of satellites</subject><subject>Formations</subject><subject>Gravitation</subject><subject>libration point</subject><subject>Libration points</subject><subject>Lluna</subject><subject>Matemàtica aplicada a les ciències</subject><subject>Matemàtiques i estadística</subject><subject>mission</subject><subject>Moon</subject><subject>motion</subject><subject>Orbital mechanics</subject><subject>orbits</subject><subject>Satèl·lits artificials</subject><subject>stability</subject><subject>system</subject><subject>Terra (Planeta)</subject><subject>Trajectories</subject><subject>Zero Relative Radial Acceleration</subject><subject>Àrees temàtiques de la UPC</subject><issn>0273-1177</issn><issn>1879-1948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqNkcGKFDEQhoO44LjrA3jL0Uu3Vcl0J4snWdZVWPWi4C2kq6vdDD2dMUkL3vYd9g19EjOMoCfxUKQC9RUf9QvxHKFFwP7lrvU5tQqwa0G3oOwjsUFrLhu83NrHYgPK6AbRmCfiac47AFTGwEZ8-eDLmvwsp5j2voS4ZOmLLHcsr30qdz_vH97HuMiSgl--rrNP8hDDUmRY5IFTZQceZeJcB6jU9pDiMPM-X4izyc-Zn_1-z8XnN9efrt42tx9v3l29vm2oQ1ua3ow9WbvFkZQiq9UARvnJTNupG3rtAe1kNRCyGT2pkUmZfqRtb5lQw6DPBZ72Ul7JJSZO5IuLPvz5HEvVvU5Zq5SuzIsTU2W_rdXd7UMmnme_cFyzq2cCDQr1_4xqVf066P4ySTHnxJM7pLD36YdDcMeQ3M7VkNwxJAfa1ZAq8-rEcD3R98DJZQq8EI-h2hc3xvAP-hf_55uc</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Salazar, F.J.T.</creator><creator>Winter, O.C.</creator><creator>Macau, E.E.</creator><creator>Masdemont, J.J.</creator><creator>Gómez, G.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>XX2</scope></search><sort><creationdate>20150701</creationdate><title>Natural formations at the Earth–Moon triangular point in perturbed restricted problems</title><author>Salazar, F.J.T. ; Winter, O.C. ; Macau, E.E. ; Masdemont, J.J. ; Gómez, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-67d6c8841dc22c832b072af7f4f5b63a018f830c1e7dac2dec276dc468ec130b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial satellites</topic><topic>Bicircular Four Body Problem</topic><topic>bodies</topic><topic>Control systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Earth (Planet)</topic><topic>Earth-Moon system</topic><topic>Eccentricity</topic><topic>Elliptic Restricted Three Body Problem</topic><topic>Equilateral libration point</topic><topic>evolution</topic><topic>formation flight</topic><topic>Formation flight of satellites</topic><topic>Formations</topic><topic>Gravitation</topic><topic>libration point</topic><topic>Libration points</topic><topic>Lluna</topic><topic>Matemàtica aplicada a les ciències</topic><topic>Matemàtiques i estadística</topic><topic>mission</topic><topic>Moon</topic><topic>motion</topic><topic>Orbital mechanics</topic><topic>orbits</topic><topic>Satèl·lits artificials</topic><topic>stability</topic><topic>system</topic><topic>Terra (Planeta)</topic><topic>Trajectories</topic><topic>Zero Relative Radial Acceleration</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar, F.J.T.</creatorcontrib><creatorcontrib>Winter, O.C.</creatorcontrib><creatorcontrib>Macau, E.E.</creatorcontrib><creatorcontrib>Masdemont, J.J.</creatorcontrib><creatorcontrib>Gómez, G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>Advances in space research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar, F.J.T.</au><au>Winter, O.C.</au><au>Macau, E.E.</au><au>Masdemont, J.J.</au><au>Gómez, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural formations at the Earth–Moon triangular point in perturbed restricted problems</atitle><jtitle>Advances in space research</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>56</volume><issue>1</issue><spage>144</spage><epage>162</epage><pages>144-162</pages><issn>0273-1177</issn><eissn>1879-1948</eissn><abstract>Previous studies for small formation flying dynamics about triangular libration points have determined the existence of regions of zero and Minimum Relative Radial Acceleration with respect to the nominal trajectory, that prevent from the expansion or contraction of the constellation. However, these studies only considered the gravitational force of the Earth and the Moon using the Circular Restricted Three Body Problem (CRTBP) scenario. Although the CRTBP model is a good approximation for the dynamics of spacecraft in the Earth–Moon system, the nominal trajectories around equilateral libration points are strongly affected when the primary orbit eccentricity and solar gravitational force are considered. In this manner, the goal of this work is the analysis of the best regions to place a formation that is flying close a bounded solution around L4, taking into account the Moon’s eccentricity and Sun’s gravity. This model is not only more realistic for practical engineering applications but permits to determine more accurately the fuel consumption to maintain the geometry of the formation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.asr.2015.03.028</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0273-1177
ispartof Advances in space research, 2015-07, Vol.56 (1), p.144-162
issn 0273-1177
1879-1948
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_288223
source ScienceDirect Journals (5 years ago - present); Recercat
subjects Artificial satellites
Bicircular Four Body Problem
bodies
Control systems
Dynamical systems
Dynamics
Earth (Planet)
Earth-Moon system
Eccentricity
Elliptic Restricted Three Body Problem
Equilateral libration point
evolution
formation flight
Formation flight of satellites
Formations
Gravitation
libration point
Libration points
Lluna
Matemàtica aplicada a les ciències
Matemàtiques i estadística
mission
Moon
motion
Orbital mechanics
orbits
Satèl·lits artificials
stability
system
Terra (Planeta)
Trajectories
Zero Relative Radial Acceleration
Àrees temàtiques de la UPC
title Natural formations at the Earth–Moon triangular point in perturbed restricted problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20formations%20at%20the%20Earth%E2%80%93Moon%20triangular%20point%20in%20perturbed%20restricted%20problems&rft.jtitle=Advances%20in%20space%20research&rft.au=Salazar,%20F.J.T.&rft.date=2015-07-01&rft.volume=56&rft.issue=1&rft.spage=144&rft.epage=162&rft.pages=144-162&rft.issn=0273-1177&rft.eissn=1879-1948&rft_id=info:doi/10.1016/j.asr.2015.03.028&rft_dat=%3Cproquest_csuc_%3E1770302133%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732830505&rft_id=info:pmid/&rft_els_id=S0273117715002306&rfr_iscdi=true