Natural formations at the Earth–Moon triangular point in perturbed restricted problems
Previous studies for small formation flying dynamics about triangular libration points have determined the existence of regions of zero and Minimum Relative Radial Acceleration with respect to the nominal trajectory, that prevent from the expansion or contraction of the constellation. However, these...
Gespeichert in:
Veröffentlicht in: | Advances in space research 2015-07, Vol.56 (1), p.144-162 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 162 |
---|---|
container_issue | 1 |
container_start_page | 144 |
container_title | Advances in space research |
container_volume | 56 |
creator | Salazar, F.J.T. Winter, O.C. Macau, E.E. Masdemont, J.J. Gómez, G. |
description | Previous studies for small formation flying dynamics about triangular libration points have determined the existence of regions of zero and Minimum Relative Radial Acceleration with respect to the nominal trajectory, that prevent from the expansion or contraction of the constellation. However, these studies only considered the gravitational force of the Earth and the Moon using the Circular Restricted Three Body Problem (CRTBP) scenario. Although the CRTBP model is a good approximation for the dynamics of spacecraft in the Earth–Moon system, the nominal trajectories around equilateral libration points are strongly affected when the primary orbit eccentricity and solar gravitational force are considered. In this manner, the goal of this work is the analysis of the best regions to place a formation that is flying close a bounded solution around L4, taking into account the Moon’s eccentricity and Sun’s gravity. This model is not only more realistic for practical engineering applications but permits to determine more accurately the fuel consumption to maintain the geometry of the formation. |
doi_str_mv | 10.1016/j.asr.2015.03.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_288223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273117715002306</els_id><sourcerecordid>1770302133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-67d6c8841dc22c832b072af7f4f5b63a018f830c1e7dac2dec276dc468ec130b3</originalsourceid><addsrcrecordid>eNqNkcGKFDEQhoO44LjrA3jL0Uu3Vcl0J4snWdZVWPWi4C2kq6vdDD2dMUkL3vYd9g19EjOMoCfxUKQC9RUf9QvxHKFFwP7lrvU5tQqwa0G3oOwjsUFrLhu83NrHYgPK6AbRmCfiac47AFTGwEZ8-eDLmvwsp5j2voS4ZOmLLHcsr30qdz_vH97HuMiSgl--rrNP8hDDUmRY5IFTZQceZeJcB6jU9pDiMPM-X4izyc-Zn_1-z8XnN9efrt42tx9v3l29vm2oQ1ua3ow9WbvFkZQiq9UARvnJTNupG3rtAe1kNRCyGT2pkUmZfqRtb5lQw6DPBZ72Ul7JJSZO5IuLPvz5HEvVvU5Zq5SuzIsTU2W_rdXd7UMmnme_cFyzq2cCDQr1_4xqVf066P4ySTHnxJM7pLD36YdDcMeQ3M7VkNwxJAfa1ZAq8-rEcD3R98DJZQq8EI-h2hc3xvAP-hf_55uc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732830505</pqid></control><display><type>article</type><title>Natural formations at the Earth–Moon triangular point in perturbed restricted problems</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Recercat</source><creator>Salazar, F.J.T. ; Winter, O.C. ; Macau, E.E. ; Masdemont, J.J. ; Gómez, G.</creator><creatorcontrib>Salazar, F.J.T. ; Winter, O.C. ; Macau, E.E. ; Masdemont, J.J. ; Gómez, G.</creatorcontrib><description>Previous studies for small formation flying dynamics about triangular libration points have determined the existence of regions of zero and Minimum Relative Radial Acceleration with respect to the nominal trajectory, that prevent from the expansion or contraction of the constellation. However, these studies only considered the gravitational force of the Earth and the Moon using the Circular Restricted Three Body Problem (CRTBP) scenario. Although the CRTBP model is a good approximation for the dynamics of spacecraft in the Earth–Moon system, the nominal trajectories around equilateral libration points are strongly affected when the primary orbit eccentricity and solar gravitational force are considered. In this manner, the goal of this work is the analysis of the best regions to place a formation that is flying close a bounded solution around L4, taking into account the Moon’s eccentricity and Sun’s gravity. This model is not only more realistic for practical engineering applications but permits to determine more accurately the fuel consumption to maintain the geometry of the formation.</description><identifier>ISSN: 0273-1177</identifier><identifier>EISSN: 1879-1948</identifier><identifier>DOI: 10.1016/j.asr.2015.03.028</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial satellites ; Bicircular Four Body Problem ; bodies ; Control systems ; Dynamical systems ; Dynamics ; Earth (Planet) ; Earth-Moon system ; Eccentricity ; Elliptic Restricted Three Body Problem ; Equilateral libration point ; evolution ; formation flight ; Formation flight of satellites ; Formations ; Gravitation ; libration point ; Libration points ; Lluna ; Matemàtica aplicada a les ciències ; Matemàtiques i estadística ; mission ; Moon ; motion ; Orbital mechanics ; orbits ; Satèl·lits artificials ; stability ; system ; Terra (Planeta) ; Trajectories ; Zero Relative Radial Acceleration ; Àrees temàtiques de la UPC</subject><ispartof>Advances in space research, 2015-07, Vol.56 (1), p.144-162</ispartof><rights>2015 COSPAR</rights><rights>info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-67d6c8841dc22c832b072af7f4f5b63a018f830c1e7dac2dec276dc468ec130b3</citedby><cites>FETCH-LOGICAL-c518t-67d6c8841dc22c832b072af7f4f5b63a018f830c1e7dac2dec276dc468ec130b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.asr.2015.03.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,26974,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Salazar, F.J.T.</creatorcontrib><creatorcontrib>Winter, O.C.</creatorcontrib><creatorcontrib>Macau, E.E.</creatorcontrib><creatorcontrib>Masdemont, J.J.</creatorcontrib><creatorcontrib>Gómez, G.</creatorcontrib><title>Natural formations at the Earth–Moon triangular point in perturbed restricted problems</title><title>Advances in space research</title><description>Previous studies for small formation flying dynamics about triangular libration points have determined the existence of regions of zero and Minimum Relative Radial Acceleration with respect to the nominal trajectory, that prevent from the expansion or contraction of the constellation. However, these studies only considered the gravitational force of the Earth and the Moon using the Circular Restricted Three Body Problem (CRTBP) scenario. Although the CRTBP model is a good approximation for the dynamics of spacecraft in the Earth–Moon system, the nominal trajectories around equilateral libration points are strongly affected when the primary orbit eccentricity and solar gravitational force are considered. In this manner, the goal of this work is the analysis of the best regions to place a formation that is flying close a bounded solution around L4, taking into account the Moon’s eccentricity and Sun’s gravity. This model is not only more realistic for practical engineering applications but permits to determine more accurately the fuel consumption to maintain the geometry of the formation.</description><subject>Artificial satellites</subject><subject>Bicircular Four Body Problem</subject><subject>bodies</subject><subject>Control systems</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Earth (Planet)</subject><subject>Earth-Moon system</subject><subject>Eccentricity</subject><subject>Elliptic Restricted Three Body Problem</subject><subject>Equilateral libration point</subject><subject>evolution</subject><subject>formation flight</subject><subject>Formation flight of satellites</subject><subject>Formations</subject><subject>Gravitation</subject><subject>libration point</subject><subject>Libration points</subject><subject>Lluna</subject><subject>Matemàtica aplicada a les ciències</subject><subject>Matemàtiques i estadística</subject><subject>mission</subject><subject>Moon</subject><subject>motion</subject><subject>Orbital mechanics</subject><subject>orbits</subject><subject>Satèl·lits artificials</subject><subject>stability</subject><subject>system</subject><subject>Terra (Planeta)</subject><subject>Trajectories</subject><subject>Zero Relative Radial Acceleration</subject><subject>Àrees temàtiques de la UPC</subject><issn>0273-1177</issn><issn>1879-1948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqNkcGKFDEQhoO44LjrA3jL0Uu3Vcl0J4snWdZVWPWi4C2kq6vdDD2dMUkL3vYd9g19EjOMoCfxUKQC9RUf9QvxHKFFwP7lrvU5tQqwa0G3oOwjsUFrLhu83NrHYgPK6AbRmCfiac47AFTGwEZ8-eDLmvwsp5j2voS4ZOmLLHcsr30qdz_vH97HuMiSgl--rrNP8hDDUmRY5IFTZQceZeJcB6jU9pDiMPM-X4izyc-Zn_1-z8XnN9efrt42tx9v3l29vm2oQ1ua3ow9WbvFkZQiq9UARvnJTNupG3rtAe1kNRCyGT2pkUmZfqRtb5lQw6DPBZ72Ul7JJSZO5IuLPvz5HEvVvU5Zq5SuzIsTU2W_rdXd7UMmnme_cFyzq2cCDQr1_4xqVf066P4ySTHnxJM7pLD36YdDcMeQ3M7VkNwxJAfa1ZAq8-rEcD3R98DJZQq8EI-h2hc3xvAP-hf_55uc</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Salazar, F.J.T.</creator><creator>Winter, O.C.</creator><creator>Macau, E.E.</creator><creator>Masdemont, J.J.</creator><creator>Gómez, G.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>XX2</scope></search><sort><creationdate>20150701</creationdate><title>Natural formations at the Earth–Moon triangular point in perturbed restricted problems</title><author>Salazar, F.J.T. ; Winter, O.C. ; Macau, E.E. ; Masdemont, J.J. ; Gómez, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-67d6c8841dc22c832b072af7f4f5b63a018f830c1e7dac2dec276dc468ec130b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial satellites</topic><topic>Bicircular Four Body Problem</topic><topic>bodies</topic><topic>Control systems</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Earth (Planet)</topic><topic>Earth-Moon system</topic><topic>Eccentricity</topic><topic>Elliptic Restricted Three Body Problem</topic><topic>Equilateral libration point</topic><topic>evolution</topic><topic>formation flight</topic><topic>Formation flight of satellites</topic><topic>Formations</topic><topic>Gravitation</topic><topic>libration point</topic><topic>Libration points</topic><topic>Lluna</topic><topic>Matemàtica aplicada a les ciències</topic><topic>Matemàtiques i estadística</topic><topic>mission</topic><topic>Moon</topic><topic>motion</topic><topic>Orbital mechanics</topic><topic>orbits</topic><topic>Satèl·lits artificials</topic><topic>stability</topic><topic>system</topic><topic>Terra (Planeta)</topic><topic>Trajectories</topic><topic>Zero Relative Radial Acceleration</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar, F.J.T.</creatorcontrib><creatorcontrib>Winter, O.C.</creatorcontrib><creatorcontrib>Macau, E.E.</creatorcontrib><creatorcontrib>Masdemont, J.J.</creatorcontrib><creatorcontrib>Gómez, G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>Advances in space research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar, F.J.T.</au><au>Winter, O.C.</au><au>Macau, E.E.</au><au>Masdemont, J.J.</au><au>Gómez, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural formations at the Earth–Moon triangular point in perturbed restricted problems</atitle><jtitle>Advances in space research</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>56</volume><issue>1</issue><spage>144</spage><epage>162</epage><pages>144-162</pages><issn>0273-1177</issn><eissn>1879-1948</eissn><abstract>Previous studies for small formation flying dynamics about triangular libration points have determined the existence of regions of zero and Minimum Relative Radial Acceleration with respect to the nominal trajectory, that prevent from the expansion or contraction of the constellation. However, these studies only considered the gravitational force of the Earth and the Moon using the Circular Restricted Three Body Problem (CRTBP) scenario. Although the CRTBP model is a good approximation for the dynamics of spacecraft in the Earth–Moon system, the nominal trajectories around equilateral libration points are strongly affected when the primary orbit eccentricity and solar gravitational force are considered. In this manner, the goal of this work is the analysis of the best regions to place a formation that is flying close a bounded solution around L4, taking into account the Moon’s eccentricity and Sun’s gravity. This model is not only more realistic for practical engineering applications but permits to determine more accurately the fuel consumption to maintain the geometry of the formation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.asr.2015.03.028</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1177 |
ispartof | Advances in space research, 2015-07, Vol.56 (1), p.144-162 |
issn | 0273-1177 1879-1948 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_288223 |
source | ScienceDirect Journals (5 years ago - present); Recercat |
subjects | Artificial satellites Bicircular Four Body Problem bodies Control systems Dynamical systems Dynamics Earth (Planet) Earth-Moon system Eccentricity Elliptic Restricted Three Body Problem Equilateral libration point evolution formation flight Formation flight of satellites Formations Gravitation libration point Libration points Lluna Matemàtica aplicada a les ciències Matemàtiques i estadística mission Moon motion Orbital mechanics orbits Satèl·lits artificials stability system Terra (Planeta) Trajectories Zero Relative Radial Acceleration Àrees temàtiques de la UPC |
title | Natural formations at the Earth–Moon triangular point in perturbed restricted problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20formations%20at%20the%20Earth%E2%80%93Moon%20triangular%20point%20in%20perturbed%20restricted%20problems&rft.jtitle=Advances%20in%20space%20research&rft.au=Salazar,%20F.J.T.&rft.date=2015-07-01&rft.volume=56&rft.issue=1&rft.spage=144&rft.epage=162&rft.pages=144-162&rft.issn=0273-1177&rft.eissn=1879-1948&rft_id=info:doi/10.1016/j.asr.2015.03.028&rft_dat=%3Cproquest_csuc_%3E1770302133%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732830505&rft_id=info:pmid/&rft_els_id=S0273117715002306&rfr_iscdi=true |