Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: the PREDIMED Study

The beneficial impact of walnuts on human health has been attributed to their unique chemical composition. In order to characterize the dietary walnut fingerprinting, spot urine samples from two sets of 195 (training) and 186 (validation) individuals were analyzed by an HPLC-q-ToF-MS untargeted meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2014-07, Vol.13 (7), p.3476-3483
Hauptverfasser: Garcia-Aloy, Mar, Llorach, Rafael, Urpi-Sarda, Mireia, Tulipani, Sara, Estruch, Ramon, Martínez-González, Miguel A, Corella, Dolores, Fitó, Montserrat, Ros, Emilio, Salas-Salvadó, Jordi, Andres-Lacueva, Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3483
container_issue 7
container_start_page 3476
container_title Journal of proteome research
container_volume 13
creator Garcia-Aloy, Mar
Llorach, Rafael
Urpi-Sarda, Mireia
Tulipani, Sara
Estruch, Ramon
Martínez-González, Miguel A
Corella, Dolores
Fitó, Montserrat
Ros, Emilio
Salas-Salvadó, Jordi
Andres-Lacueva, Cristina
description The beneficial impact of walnuts on human health has been attributed to their unique chemical composition. In order to characterize the dietary walnut fingerprinting, spot urine samples from two sets of 195 (training) and 186 (validation) individuals were analyzed by an HPLC-q-ToF-MS untargeted metabolomics approach, selecting the most discriminating metabolites by multivariate data analysis (VIP ≥ 1.5). Stepwise logistic regression analysis was used to design a multimetabolite prediction biomarker model. The global performance of the model and each included metabolite in it was evaluated by receiver operating characteristic curves, using the area under the curve (AUC) values. Dietary exposure to walnuts was characterized by 18 metabolites, including markers of fatty acid metabolism, ellagitannin-derived microbial compounds, and intermediate metabolites of the tryptophan/serotonin pathway. The predictive model of walnut exposure included at least one compound of each class. The AUC (95% CI) for the combined biomarker model was 93.4% (90.1–96.8%) in the training set and 90.2% (85.9–94.6%) in the validation set. The AUCs for individual metabolites were ≤85%. As far as we know, this is the first study proposing a combination of biomarkers of walnut exposure in a population under free-living conditions, as considered in epidemiological studies examining associations between diet and health outcomes.
doi_str_mv 10.1021/pr500425r
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_283193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1543281911</sourcerecordid><originalsourceid>FETCH-LOGICAL-a392t-c227748cc52549527422148548fd7950318a464a38575058996ea2fa8314c1343</originalsourceid><addsrcrecordid>eNptkb1uFDEUhS0EIiFQ8ALIDRIUA_a1nbHpYLOBSLsQARGl5fV4wGFmPPgn0ta8OF52ExoKy3_f-Yp7EHpKyStKgL6eoyCEg4j30DEVTDRMkfb-7VkqdoQepXRNCBUtYQ_REXApAQQ7Rr8_hhs34HUZsh9dNpsw-OzwZXSdt9mHCYcefzPDVDJehCmVcf77utlig6-in0zc4nc-jCb-dBGvQ1dtfqqf59G5ZuVv_PQdX4a5DGYXfIPzj6r_vDy7WC_P8Jdcuu1j9KA3Q3JPDvsJujpffl18aFaf3l8s3q4awxTkxgK0LZfWChBcCWg5AOVScNl3rRKEUWn4KTdMilYQIZU6dQZ6IxnlljLOThDde20qVkdnXbQm62D8v8tuAWlBQ40pVjMv9pk5hl_FpaxHn6wbBjO5UJKmgjOQVFFa0ZcHfQwpRdfrOfo6l62mRO960nc9VfbZQVs2o-vuyNtiKvB8Dxib9HUocaqT-Y_oD56Gl4Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543281911</pqid></control><display><type>article</type><title>Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: the PREDIMED Study</title><source>MEDLINE</source><source>Recercat</source><source>American Chemical Society Journals</source><creator>Garcia-Aloy, Mar ; Llorach, Rafael ; Urpi-Sarda, Mireia ; Tulipani, Sara ; Estruch, Ramon ; Martínez-González, Miguel A ; Corella, Dolores ; Fitó, Montserrat ; Ros, Emilio ; Salas-Salvadó, Jordi ; Andres-Lacueva, Cristina</creator><creatorcontrib>Garcia-Aloy, Mar ; Llorach, Rafael ; Urpi-Sarda, Mireia ; Tulipani, Sara ; Estruch, Ramon ; Martínez-González, Miguel A ; Corella, Dolores ; Fitó, Montserrat ; Ros, Emilio ; Salas-Salvadó, Jordi ; Andres-Lacueva, Cristina</creatorcontrib><description>The beneficial impact of walnuts on human health has been attributed to their unique chemical composition. In order to characterize the dietary walnut fingerprinting, spot urine samples from two sets of 195 (training) and 186 (validation) individuals were analyzed by an HPLC-q-ToF-MS untargeted metabolomics approach, selecting the most discriminating metabolites by multivariate data analysis (VIP ≥ 1.5). Stepwise logistic regression analysis was used to design a multimetabolite prediction biomarker model. The global performance of the model and each included metabolite in it was evaluated by receiver operating characteristic curves, using the area under the curve (AUC) values. Dietary exposure to walnuts was characterized by 18 metabolites, including markers of fatty acid metabolism, ellagitannin-derived microbial compounds, and intermediate metabolites of the tryptophan/serotonin pathway. The predictive model of walnut exposure included at least one compound of each class. The AUC (95% CI) for the combined biomarker model was 93.4% (90.1–96.8%) in the training set and 90.2% (85.9–94.6%) in the validation set. The AUCs for individual metabolites were ≤85%. As far as we know, this is the first study proposing a combination of biomarkers of walnut exposure in a population under free-living conditions, as considered in epidemiological studies examining associations between diet and health outcomes.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/pr500425r</identifier><identifier>PMID: 24882253</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aged ; Aged, 80 and over ; Biochemical markers ; Biomarkers - urine ; Cardiovascular diseases ; Cardiovascular Diseases - prevention &amp; control ; Cardiovascular Diseases - urine ; Cooking (Nuts) ; Cromatografia de líquids d'alta resolució ; Cuina (Nous) ; Cuina mediterrània ; Diet, Mediterranean ; Female ; High performance liquid chromatography ; Humans ; Juglans - metabolism ; Malalties cardiovasculars ; Male ; Marcadors bioquímics ; Mediterranean cooking ; Metabolism ; Metabolisme ; Metabolome ; Middle Aged ; Orina ; Randomized Controlled Trials as Topic ; ROC Curve ; Urine</subject><ispartof>Journal of proteome research, 2014-07, Vol.13 (7), p.3476-3483</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>(c) American Chemical Society , 2014 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a392t-c227748cc52549527422148548fd7950318a464a38575058996ea2fa8314c1343</citedby><cites>FETCH-LOGICAL-a392t-c227748cc52549527422148548fd7950318a464a38575058996ea2fa8314c1343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/pr500425r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/pr500425r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,26974,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24882253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia-Aloy, Mar</creatorcontrib><creatorcontrib>Llorach, Rafael</creatorcontrib><creatorcontrib>Urpi-Sarda, Mireia</creatorcontrib><creatorcontrib>Tulipani, Sara</creatorcontrib><creatorcontrib>Estruch, Ramon</creatorcontrib><creatorcontrib>Martínez-González, Miguel A</creatorcontrib><creatorcontrib>Corella, Dolores</creatorcontrib><creatorcontrib>Fitó, Montserrat</creatorcontrib><creatorcontrib>Ros, Emilio</creatorcontrib><creatorcontrib>Salas-Salvadó, Jordi</creatorcontrib><creatorcontrib>Andres-Lacueva, Cristina</creatorcontrib><title>Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: the PREDIMED Study</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>The beneficial impact of walnuts on human health has been attributed to their unique chemical composition. In order to characterize the dietary walnut fingerprinting, spot urine samples from two sets of 195 (training) and 186 (validation) individuals were analyzed by an HPLC-q-ToF-MS untargeted metabolomics approach, selecting the most discriminating metabolites by multivariate data analysis (VIP ≥ 1.5). Stepwise logistic regression analysis was used to design a multimetabolite prediction biomarker model. The global performance of the model and each included metabolite in it was evaluated by receiver operating characteristic curves, using the area under the curve (AUC) values. Dietary exposure to walnuts was characterized by 18 metabolites, including markers of fatty acid metabolism, ellagitannin-derived microbial compounds, and intermediate metabolites of the tryptophan/serotonin pathway. The predictive model of walnut exposure included at least one compound of each class. The AUC (95% CI) for the combined biomarker model was 93.4% (90.1–96.8%) in the training set and 90.2% (85.9–94.6%) in the validation set. The AUCs for individual metabolites were ≤85%. As far as we know, this is the first study proposing a combination of biomarkers of walnut exposure in a population under free-living conditions, as considered in epidemiological studies examining associations between diet and health outcomes.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Biochemical markers</subject><subject>Biomarkers - urine</subject><subject>Cardiovascular diseases</subject><subject>Cardiovascular Diseases - prevention &amp; control</subject><subject>Cardiovascular Diseases - urine</subject><subject>Cooking (Nuts)</subject><subject>Cromatografia de líquids d'alta resolució</subject><subject>Cuina (Nous)</subject><subject>Cuina mediterrània</subject><subject>Diet, Mediterranean</subject><subject>Female</subject><subject>High performance liquid chromatography</subject><subject>Humans</subject><subject>Juglans - metabolism</subject><subject>Malalties cardiovasculars</subject><subject>Male</subject><subject>Marcadors bioquímics</subject><subject>Mediterranean cooking</subject><subject>Metabolism</subject><subject>Metabolisme</subject><subject>Metabolome</subject><subject>Middle Aged</subject><subject>Orina</subject><subject>Randomized Controlled Trials as Topic</subject><subject>ROC Curve</subject><subject>Urine</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNptkb1uFDEUhS0EIiFQ8ALIDRIUA_a1nbHpYLOBSLsQARGl5fV4wGFmPPgn0ta8OF52ExoKy3_f-Yp7EHpKyStKgL6eoyCEg4j30DEVTDRMkfb-7VkqdoQepXRNCBUtYQ_REXApAQQ7Rr8_hhs34HUZsh9dNpsw-OzwZXSdt9mHCYcefzPDVDJehCmVcf77utlig6-in0zc4nc-jCb-dBGvQ1dtfqqf59G5ZuVv_PQdX4a5DGYXfIPzj6r_vDy7WC_P8Jdcuu1j9KA3Q3JPDvsJujpffl18aFaf3l8s3q4awxTkxgK0LZfWChBcCWg5AOVScNl3rRKEUWn4KTdMilYQIZU6dQZ6IxnlljLOThDde20qVkdnXbQm62D8v8tuAWlBQ40pVjMv9pk5hl_FpaxHn6wbBjO5UJKmgjOQVFFa0ZcHfQwpRdfrOfo6l62mRO960nc9VfbZQVs2o-vuyNtiKvB8Dxib9HUocaqT-Y_oD56Gl4Y</recordid><startdate>20140703</startdate><enddate>20140703</enddate><creator>Garcia-Aloy, Mar</creator><creator>Llorach, Rafael</creator><creator>Urpi-Sarda, Mireia</creator><creator>Tulipani, Sara</creator><creator>Estruch, Ramon</creator><creator>Martínez-González, Miguel A</creator><creator>Corella, Dolores</creator><creator>Fitó, Montserrat</creator><creator>Ros, Emilio</creator><creator>Salas-Salvadó, Jordi</creator><creator>Andres-Lacueva, Cristina</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>XX2</scope></search><sort><creationdate>20140703</creationdate><title>Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: the PREDIMED Study</title><author>Garcia-Aloy, Mar ; Llorach, Rafael ; Urpi-Sarda, Mireia ; Tulipani, Sara ; Estruch, Ramon ; Martínez-González, Miguel A ; Corella, Dolores ; Fitó, Montserrat ; Ros, Emilio ; Salas-Salvadó, Jordi ; Andres-Lacueva, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a392t-c227748cc52549527422148548fd7950318a464a38575058996ea2fa8314c1343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Biochemical markers</topic><topic>Biomarkers - urine</topic><topic>Cardiovascular diseases</topic><topic>Cardiovascular Diseases - prevention &amp; control</topic><topic>Cardiovascular Diseases - urine</topic><topic>Cooking (Nuts)</topic><topic>Cromatografia de líquids d'alta resolució</topic><topic>Cuina (Nous)</topic><topic>Cuina mediterrània</topic><topic>Diet, Mediterranean</topic><topic>Female</topic><topic>High performance liquid chromatography</topic><topic>Humans</topic><topic>Juglans - metabolism</topic><topic>Malalties cardiovasculars</topic><topic>Male</topic><topic>Marcadors bioquímics</topic><topic>Mediterranean cooking</topic><topic>Metabolism</topic><topic>Metabolisme</topic><topic>Metabolome</topic><topic>Middle Aged</topic><topic>Orina</topic><topic>Randomized Controlled Trials as Topic</topic><topic>ROC Curve</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Aloy, Mar</creatorcontrib><creatorcontrib>Llorach, Rafael</creatorcontrib><creatorcontrib>Urpi-Sarda, Mireia</creatorcontrib><creatorcontrib>Tulipani, Sara</creatorcontrib><creatorcontrib>Estruch, Ramon</creatorcontrib><creatorcontrib>Martínez-González, Miguel A</creatorcontrib><creatorcontrib>Corella, Dolores</creatorcontrib><creatorcontrib>Fitó, Montserrat</creatorcontrib><creatorcontrib>Ros, Emilio</creatorcontrib><creatorcontrib>Salas-Salvadó, Jordi</creatorcontrib><creatorcontrib>Andres-Lacueva, Cristina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Aloy, Mar</au><au>Llorach, Rafael</au><au>Urpi-Sarda, Mireia</au><au>Tulipani, Sara</au><au>Estruch, Ramon</au><au>Martínez-González, Miguel A</au><au>Corella, Dolores</au><au>Fitó, Montserrat</au><au>Ros, Emilio</au><au>Salas-Salvadó, Jordi</au><au>Andres-Lacueva, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: the PREDIMED Study</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2014-07-03</date><risdate>2014</risdate><volume>13</volume><issue>7</issue><spage>3476</spage><epage>3483</epage><pages>3476-3483</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>The beneficial impact of walnuts on human health has been attributed to their unique chemical composition. In order to characterize the dietary walnut fingerprinting, spot urine samples from two sets of 195 (training) and 186 (validation) individuals were analyzed by an HPLC-q-ToF-MS untargeted metabolomics approach, selecting the most discriminating metabolites by multivariate data analysis (VIP ≥ 1.5). Stepwise logistic regression analysis was used to design a multimetabolite prediction biomarker model. The global performance of the model and each included metabolite in it was evaluated by receiver operating characteristic curves, using the area under the curve (AUC) values. Dietary exposure to walnuts was characterized by 18 metabolites, including markers of fatty acid metabolism, ellagitannin-derived microbial compounds, and intermediate metabolites of the tryptophan/serotonin pathway. The predictive model of walnut exposure included at least one compound of each class. The AUC (95% CI) for the combined biomarker model was 93.4% (90.1–96.8%) in the training set and 90.2% (85.9–94.6%) in the validation set. The AUCs for individual metabolites were ≤85%. As far as we know, this is the first study proposing a combination of biomarkers of walnut exposure in a population under free-living conditions, as considered in epidemiological studies examining associations between diet and health outcomes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24882253</pmid><doi>10.1021/pr500425r</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2014-07, Vol.13 (7), p.3476-3483
issn 1535-3893
1535-3907
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_283193
source MEDLINE; Recercat; American Chemical Society Journals
subjects Aged
Aged, 80 and over
Biochemical markers
Biomarkers - urine
Cardiovascular diseases
Cardiovascular Diseases - prevention & control
Cardiovascular Diseases - urine
Cooking (Nuts)
Cromatografia de líquids d'alta resolució
Cuina (Nous)
Cuina mediterrània
Diet, Mediterranean
Female
High performance liquid chromatography
Humans
Juglans - metabolism
Malalties cardiovasculars
Male
Marcadors bioquímics
Mediterranean cooking
Metabolism
Metabolisme
Metabolome
Middle Aged
Orina
Randomized Controlled Trials as Topic
ROC Curve
Urine
title Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: the PREDIMED Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Multimetabolite%20Prediction%20of%20Walnut%20Consumption%20by%20a%20Urinary%20Biomarker%20Model%20in%20a%20Free-Living%20Population:%20the%20PREDIMED%20Study&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Garcia-Aloy,%20Mar&rft.date=2014-07-03&rft.volume=13&rft.issue=7&rft.spage=3476&rft.epage=3483&rft.pages=3476-3483&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/pr500425r&rft_dat=%3Cproquest_csuc_%3E1543281911%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543281911&rft_id=info:pmid/24882253&rfr_iscdi=true