Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: the PREDIMED Study
The beneficial impact of walnuts on human health has been attributed to their unique chemical composition. In order to characterize the dietary walnut fingerprinting, spot urine samples from two sets of 195 (training) and 186 (validation) individuals were analyzed by an HPLC-q-ToF-MS untargeted meta...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2014-07, Vol.13 (7), p.3476-3483 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3483 |
---|---|
container_issue | 7 |
container_start_page | 3476 |
container_title | Journal of proteome research |
container_volume | 13 |
creator | Garcia-Aloy, Mar Llorach, Rafael Urpi-Sarda, Mireia Tulipani, Sara Estruch, Ramon Martínez-González, Miguel A Corella, Dolores Fitó, Montserrat Ros, Emilio Salas-Salvadó, Jordi Andres-Lacueva, Cristina |
description | The beneficial impact of walnuts on human health has been attributed to their unique chemical composition. In order to characterize the dietary walnut fingerprinting, spot urine samples from two sets of 195 (training) and 186 (validation) individuals were analyzed by an HPLC-q-ToF-MS untargeted metabolomics approach, selecting the most discriminating metabolites by multivariate data analysis (VIP ≥ 1.5). Stepwise logistic regression analysis was used to design a multimetabolite prediction biomarker model. The global performance of the model and each included metabolite in it was evaluated by receiver operating characteristic curves, using the area under the curve (AUC) values. Dietary exposure to walnuts was characterized by 18 metabolites, including markers of fatty acid metabolism, ellagitannin-derived microbial compounds, and intermediate metabolites of the tryptophan/serotonin pathway. The predictive model of walnut exposure included at least one compound of each class. The AUC (95% CI) for the combined biomarker model was 93.4% (90.1–96.8%) in the training set and 90.2% (85.9–94.6%) in the validation set. The AUCs for individual metabolites were ≤85%. As far as we know, this is the first study proposing a combination of biomarkers of walnut exposure in a population under free-living conditions, as considered in epidemiological studies examining associations between diet and health outcomes. |
doi_str_mv | 10.1021/pr500425r |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_283193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1543281911</sourcerecordid><originalsourceid>FETCH-LOGICAL-a392t-c227748cc52549527422148548fd7950318a464a38575058996ea2fa8314c1343</originalsourceid><addsrcrecordid>eNptkb1uFDEUhS0EIiFQ8ALIDRIUA_a1nbHpYLOBSLsQARGl5fV4wGFmPPgn0ta8OF52ExoKy3_f-Yp7EHpKyStKgL6eoyCEg4j30DEVTDRMkfb-7VkqdoQepXRNCBUtYQ_REXApAQQ7Rr8_hhs34HUZsh9dNpsw-OzwZXSdt9mHCYcefzPDVDJehCmVcf77utlig6-in0zc4nc-jCb-dBGvQ1dtfqqf59G5ZuVv_PQdX4a5DGYXfIPzj6r_vDy7WC_P8Jdcuu1j9KA3Q3JPDvsJujpffl18aFaf3l8s3q4awxTkxgK0LZfWChBcCWg5AOVScNl3rRKEUWn4KTdMilYQIZU6dQZ6IxnlljLOThDde20qVkdnXbQm62D8v8tuAWlBQ40pVjMv9pk5hl_FpaxHn6wbBjO5UJKmgjOQVFFa0ZcHfQwpRdfrOfo6l62mRO960nc9VfbZQVs2o-vuyNtiKvB8Dxib9HUocaqT-Y_oD56Gl4Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543281911</pqid></control><display><type>article</type><title>Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: the PREDIMED Study</title><source>MEDLINE</source><source>Recercat</source><source>American Chemical Society Journals</source><creator>Garcia-Aloy, Mar ; Llorach, Rafael ; Urpi-Sarda, Mireia ; Tulipani, Sara ; Estruch, Ramon ; Martínez-González, Miguel A ; Corella, Dolores ; Fitó, Montserrat ; Ros, Emilio ; Salas-Salvadó, Jordi ; Andres-Lacueva, Cristina</creator><creatorcontrib>Garcia-Aloy, Mar ; Llorach, Rafael ; Urpi-Sarda, Mireia ; Tulipani, Sara ; Estruch, Ramon ; Martínez-González, Miguel A ; Corella, Dolores ; Fitó, Montserrat ; Ros, Emilio ; Salas-Salvadó, Jordi ; Andres-Lacueva, Cristina</creatorcontrib><description>The beneficial impact of walnuts on human health has been attributed to their unique chemical composition. In order to characterize the dietary walnut fingerprinting, spot urine samples from two sets of 195 (training) and 186 (validation) individuals were analyzed by an HPLC-q-ToF-MS untargeted metabolomics approach, selecting the most discriminating metabolites by multivariate data analysis (VIP ≥ 1.5). Stepwise logistic regression analysis was used to design a multimetabolite prediction biomarker model. The global performance of the model and each included metabolite in it was evaluated by receiver operating characteristic curves, using the area under the curve (AUC) values. Dietary exposure to walnuts was characterized by 18 metabolites, including markers of fatty acid metabolism, ellagitannin-derived microbial compounds, and intermediate metabolites of the tryptophan/serotonin pathway. The predictive model of walnut exposure included at least one compound of each class. The AUC (95% CI) for the combined biomarker model was 93.4% (90.1–96.8%) in the training set and 90.2% (85.9–94.6%) in the validation set. The AUCs for individual metabolites were ≤85%. As far as we know, this is the first study proposing a combination of biomarkers of walnut exposure in a population under free-living conditions, as considered in epidemiological studies examining associations between diet and health outcomes.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/pr500425r</identifier><identifier>PMID: 24882253</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aged ; Aged, 80 and over ; Biochemical markers ; Biomarkers - urine ; Cardiovascular diseases ; Cardiovascular Diseases - prevention & control ; Cardiovascular Diseases - urine ; Cooking (Nuts) ; Cromatografia de líquids d'alta resolució ; Cuina (Nous) ; Cuina mediterrània ; Diet, Mediterranean ; Female ; High performance liquid chromatography ; Humans ; Juglans - metabolism ; Malalties cardiovasculars ; Male ; Marcadors bioquímics ; Mediterranean cooking ; Metabolism ; Metabolisme ; Metabolome ; Middle Aged ; Orina ; Randomized Controlled Trials as Topic ; ROC Curve ; Urine</subject><ispartof>Journal of proteome research, 2014-07, Vol.13 (7), p.3476-3483</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>(c) American Chemical Society , 2014 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a392t-c227748cc52549527422148548fd7950318a464a38575058996ea2fa8314c1343</citedby><cites>FETCH-LOGICAL-a392t-c227748cc52549527422148548fd7950318a464a38575058996ea2fa8314c1343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/pr500425r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/pr500425r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,26974,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24882253$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia-Aloy, Mar</creatorcontrib><creatorcontrib>Llorach, Rafael</creatorcontrib><creatorcontrib>Urpi-Sarda, Mireia</creatorcontrib><creatorcontrib>Tulipani, Sara</creatorcontrib><creatorcontrib>Estruch, Ramon</creatorcontrib><creatorcontrib>Martínez-González, Miguel A</creatorcontrib><creatorcontrib>Corella, Dolores</creatorcontrib><creatorcontrib>Fitó, Montserrat</creatorcontrib><creatorcontrib>Ros, Emilio</creatorcontrib><creatorcontrib>Salas-Salvadó, Jordi</creatorcontrib><creatorcontrib>Andres-Lacueva, Cristina</creatorcontrib><title>Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: the PREDIMED Study</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>The beneficial impact of walnuts on human health has been attributed to their unique chemical composition. In order to characterize the dietary walnut fingerprinting, spot urine samples from two sets of 195 (training) and 186 (validation) individuals were analyzed by an HPLC-q-ToF-MS untargeted metabolomics approach, selecting the most discriminating metabolites by multivariate data analysis (VIP ≥ 1.5). Stepwise logistic regression analysis was used to design a multimetabolite prediction biomarker model. The global performance of the model and each included metabolite in it was evaluated by receiver operating characteristic curves, using the area under the curve (AUC) values. Dietary exposure to walnuts was characterized by 18 metabolites, including markers of fatty acid metabolism, ellagitannin-derived microbial compounds, and intermediate metabolites of the tryptophan/serotonin pathway. The predictive model of walnut exposure included at least one compound of each class. The AUC (95% CI) for the combined biomarker model was 93.4% (90.1–96.8%) in the training set and 90.2% (85.9–94.6%) in the validation set. The AUCs for individual metabolites were ≤85%. As far as we know, this is the first study proposing a combination of biomarkers of walnut exposure in a population under free-living conditions, as considered in epidemiological studies examining associations between diet and health outcomes.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Biochemical markers</subject><subject>Biomarkers - urine</subject><subject>Cardiovascular diseases</subject><subject>Cardiovascular Diseases - prevention & control</subject><subject>Cardiovascular Diseases - urine</subject><subject>Cooking (Nuts)</subject><subject>Cromatografia de líquids d'alta resolució</subject><subject>Cuina (Nous)</subject><subject>Cuina mediterrània</subject><subject>Diet, Mediterranean</subject><subject>Female</subject><subject>High performance liquid chromatography</subject><subject>Humans</subject><subject>Juglans - metabolism</subject><subject>Malalties cardiovasculars</subject><subject>Male</subject><subject>Marcadors bioquímics</subject><subject>Mediterranean cooking</subject><subject>Metabolism</subject><subject>Metabolisme</subject><subject>Metabolome</subject><subject>Middle Aged</subject><subject>Orina</subject><subject>Randomized Controlled Trials as Topic</subject><subject>ROC Curve</subject><subject>Urine</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNptkb1uFDEUhS0EIiFQ8ALIDRIUA_a1nbHpYLOBSLsQARGl5fV4wGFmPPgn0ta8OF52ExoKy3_f-Yp7EHpKyStKgL6eoyCEg4j30DEVTDRMkfb-7VkqdoQepXRNCBUtYQ_REXApAQQ7Rr8_hhs34HUZsh9dNpsw-OzwZXSdt9mHCYcefzPDVDJehCmVcf77utlig6-in0zc4nc-jCb-dBGvQ1dtfqqf59G5ZuVv_PQdX4a5DGYXfIPzj6r_vDy7WC_P8Jdcuu1j9KA3Q3JPDvsJujpffl18aFaf3l8s3q4awxTkxgK0LZfWChBcCWg5AOVScNl3rRKEUWn4KTdMilYQIZU6dQZ6IxnlljLOThDde20qVkdnXbQm62D8v8tuAWlBQ40pVjMv9pk5hl_FpaxHn6wbBjO5UJKmgjOQVFFa0ZcHfQwpRdfrOfo6l62mRO960nc9VfbZQVs2o-vuyNtiKvB8Dxib9HUocaqT-Y_oD56Gl4Y</recordid><startdate>20140703</startdate><enddate>20140703</enddate><creator>Garcia-Aloy, Mar</creator><creator>Llorach, Rafael</creator><creator>Urpi-Sarda, Mireia</creator><creator>Tulipani, Sara</creator><creator>Estruch, Ramon</creator><creator>Martínez-González, Miguel A</creator><creator>Corella, Dolores</creator><creator>Fitó, Montserrat</creator><creator>Ros, Emilio</creator><creator>Salas-Salvadó, Jordi</creator><creator>Andres-Lacueva, Cristina</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>XX2</scope></search><sort><creationdate>20140703</creationdate><title>Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: the PREDIMED Study</title><author>Garcia-Aloy, Mar ; Llorach, Rafael ; Urpi-Sarda, Mireia ; Tulipani, Sara ; Estruch, Ramon ; Martínez-González, Miguel A ; Corella, Dolores ; Fitó, Montserrat ; Ros, Emilio ; Salas-Salvadó, Jordi ; Andres-Lacueva, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a392t-c227748cc52549527422148548fd7950318a464a38575058996ea2fa8314c1343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Biochemical markers</topic><topic>Biomarkers - urine</topic><topic>Cardiovascular diseases</topic><topic>Cardiovascular Diseases - prevention & control</topic><topic>Cardiovascular Diseases - urine</topic><topic>Cooking (Nuts)</topic><topic>Cromatografia de líquids d'alta resolució</topic><topic>Cuina (Nous)</topic><topic>Cuina mediterrània</topic><topic>Diet, Mediterranean</topic><topic>Female</topic><topic>High performance liquid chromatography</topic><topic>Humans</topic><topic>Juglans - metabolism</topic><topic>Malalties cardiovasculars</topic><topic>Male</topic><topic>Marcadors bioquímics</topic><topic>Mediterranean cooking</topic><topic>Metabolism</topic><topic>Metabolisme</topic><topic>Metabolome</topic><topic>Middle Aged</topic><topic>Orina</topic><topic>Randomized Controlled Trials as Topic</topic><topic>ROC Curve</topic><topic>Urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Aloy, Mar</creatorcontrib><creatorcontrib>Llorach, Rafael</creatorcontrib><creatorcontrib>Urpi-Sarda, Mireia</creatorcontrib><creatorcontrib>Tulipani, Sara</creatorcontrib><creatorcontrib>Estruch, Ramon</creatorcontrib><creatorcontrib>Martínez-González, Miguel A</creatorcontrib><creatorcontrib>Corella, Dolores</creatorcontrib><creatorcontrib>Fitó, Montserrat</creatorcontrib><creatorcontrib>Ros, Emilio</creatorcontrib><creatorcontrib>Salas-Salvadó, Jordi</creatorcontrib><creatorcontrib>Andres-Lacueva, Cristina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Aloy, Mar</au><au>Llorach, Rafael</au><au>Urpi-Sarda, Mireia</au><au>Tulipani, Sara</au><au>Estruch, Ramon</au><au>Martínez-González, Miguel A</au><au>Corella, Dolores</au><au>Fitó, Montserrat</au><au>Ros, Emilio</au><au>Salas-Salvadó, Jordi</au><au>Andres-Lacueva, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: the PREDIMED Study</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2014-07-03</date><risdate>2014</risdate><volume>13</volume><issue>7</issue><spage>3476</spage><epage>3483</epage><pages>3476-3483</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>The beneficial impact of walnuts on human health has been attributed to their unique chemical composition. In order to characterize the dietary walnut fingerprinting, spot urine samples from two sets of 195 (training) and 186 (validation) individuals were analyzed by an HPLC-q-ToF-MS untargeted metabolomics approach, selecting the most discriminating metabolites by multivariate data analysis (VIP ≥ 1.5). Stepwise logistic regression analysis was used to design a multimetabolite prediction biomarker model. The global performance of the model and each included metabolite in it was evaluated by receiver operating characteristic curves, using the area under the curve (AUC) values. Dietary exposure to walnuts was characterized by 18 metabolites, including markers of fatty acid metabolism, ellagitannin-derived microbial compounds, and intermediate metabolites of the tryptophan/serotonin pathway. The predictive model of walnut exposure included at least one compound of each class. The AUC (95% CI) for the combined biomarker model was 93.4% (90.1–96.8%) in the training set and 90.2% (85.9–94.6%) in the validation set. The AUCs for individual metabolites were ≤85%. As far as we know, this is the first study proposing a combination of biomarkers of walnut exposure in a population under free-living conditions, as considered in epidemiological studies examining associations between diet and health outcomes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24882253</pmid><doi>10.1021/pr500425r</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2014-07, Vol.13 (7), p.3476-3483 |
issn | 1535-3893 1535-3907 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_283193 |
source | MEDLINE; Recercat; American Chemical Society Journals |
subjects | Aged Aged, 80 and over Biochemical markers Biomarkers - urine Cardiovascular diseases Cardiovascular Diseases - prevention & control Cardiovascular Diseases - urine Cooking (Nuts) Cromatografia de líquids d'alta resolució Cuina (Nous) Cuina mediterrània Diet, Mediterranean Female High performance liquid chromatography Humans Juglans - metabolism Malalties cardiovasculars Male Marcadors bioquímics Mediterranean cooking Metabolism Metabolisme Metabolome Middle Aged Orina Randomized Controlled Trials as Topic ROC Curve Urine |
title | Novel Multimetabolite Prediction of Walnut Consumption by a Urinary Biomarker Model in a Free-Living Population: the PREDIMED Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Multimetabolite%20Prediction%20of%20Walnut%20Consumption%20by%20a%20Urinary%20Biomarker%20Model%20in%20a%20Free-Living%20Population:%20the%20PREDIMED%20Study&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Garcia-Aloy,%20Mar&rft.date=2014-07-03&rft.volume=13&rft.issue=7&rft.spage=3476&rft.epage=3483&rft.pages=3476-3483&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/pr500425r&rft_dat=%3Cproquest_csuc_%3E1543281911%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543281911&rft_id=info:pmid/24882253&rfr_iscdi=true |