Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime
The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a stati...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2016-04, Vol.122 (4), p.1-6, Article 263 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 122 |
creator | Ochoa, Diego Alejandro García, Jose Eduardo |
description | The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL–NTS properties soften around its orthorhombic to tetragonal phase transition. |
doi_str_mv | 10.1007/s00339-016-9808-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_281355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880024527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-a72929d25fbb0370a263692fcbb48847c0df35925ccf0ed777354b9ffd303d8e3</originalsourceid><addsrcrecordid>eNp9kU-r1TAQxYMoeH36Adx16SY6SdomWcrDf_DAt3iuQ5pO7sulbWomRfTT23IFXTkwDAPndxjmMPZawFsBoN8RgFKWg-i5NWC4eMJOolWSQ6_gKTuBbTU3yvbP2QuiC-zVSnlil_uCiXx4bOY84pSWc5NjU3Fesfi6FeQjrriMuNQmYikZJwy1pNAUpDUvhId-Tfgrh52YU6DG14a2gdOPVMPj4VjwnGZ8yZ5FPxG--jNv2LePHx5uP_O7r5--3L6_46GFvnKvpZV2lF0cBlAavOxVb2UMw9Aa0-oAY1SdlV0IEXDUWquuHWyMowI1GlQ3TFx9A23BFdzvCr667NPf5WgJWjpphOq6nXlzZdaSv29I1c2JAk6TXzBv5IQxALLtpP7HvmSigtGtJc2-_HQC3JGFu2bh9izckYUTOyOvDO3a5YzFXfJWlv0L_4F-Ayc7jlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880024527</pqid></control><display><type>article</type><title>Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime</title><source>Recercat</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ochoa, Diego Alejandro ; García, Jose Eduardo</creator><creatorcontrib>Ochoa, Diego Alejandro ; García, Jose Eduardo</creatorcontrib><description>The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL–NTS properties soften around its orthorhombic to tetragonal phase transition.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-9808-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>ceramics ; Ceràmica piezoelèctrica ; Characterization and Evaluation of Materials ; Coercive force ; Condensed Matter Physics ; dielectric properties ; Dielectrics ; Dielèctrics ; Distribution functions ; Ferroelectric crystals ; Ferroelectric materials ; Ferroelectricitat ; Ferroelectricity ; ferroelectrics ; Física ; Hysteresis ; Machines ; Manufacturing ; Mathematical models ; Nanotechnology ; Nonlinearity ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Piezoelectric ceramics ; Preisach model ; Processes ; PZT ; Surfaces and Interfaces ; Thin Films ; Àrees temàtiques de la UPC</subject><ispartof>Applied physics. A, Materials science & processing, 2016-04, Vol.122 (4), p.1-6, Article 263</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-a72929d25fbb0370a263692fcbb48847c0df35925ccf0ed777354b9ffd303d8e3</citedby><cites>FETCH-LOGICAL-c406t-a72929d25fbb0370a263692fcbb48847c0df35925ccf0ed777354b9ffd303d8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-9808-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-9808-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,26974,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ochoa, Diego Alejandro</creatorcontrib><creatorcontrib>García, Jose Eduardo</creatorcontrib><title>Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL–NTS properties soften around its orthorhombic to tetragonal phase transition.</description><subject>ceramics</subject><subject>Ceràmica piezoelèctrica</subject><subject>Characterization and Evaluation of Materials</subject><subject>Coercive force</subject><subject>Condensed Matter Physics</subject><subject>dielectric properties</subject><subject>Dielectrics</subject><subject>Dielèctrics</subject><subject>Distribution functions</subject><subject>Ferroelectric crystals</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricitat</subject><subject>Ferroelectricity</subject><subject>ferroelectrics</subject><subject>Física</subject><subject>Hysteresis</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Nonlinearity</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Piezoelectric ceramics</subject><subject>Preisach model</subject><subject>Processes</subject><subject>PZT</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Àrees temàtiques de la UPC</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kU-r1TAQxYMoeH36Adx16SY6SdomWcrDf_DAt3iuQ5pO7sulbWomRfTT23IFXTkwDAPndxjmMPZawFsBoN8RgFKWg-i5NWC4eMJOolWSQ6_gKTuBbTU3yvbP2QuiC-zVSnlil_uCiXx4bOY84pSWc5NjU3Fesfi6FeQjrriMuNQmYikZJwy1pNAUpDUvhId-Tfgrh52YU6DG14a2gdOPVMPj4VjwnGZ8yZ5FPxG--jNv2LePHx5uP_O7r5--3L6_46GFvnKvpZV2lF0cBlAavOxVb2UMw9Aa0-oAY1SdlV0IEXDUWquuHWyMowI1GlQ3TFx9A23BFdzvCr667NPf5WgJWjpphOq6nXlzZdaSv29I1c2JAk6TXzBv5IQxALLtpP7HvmSigtGtJc2-_HQC3JGFu2bh9izckYUTOyOvDO3a5YzFXfJWlv0L_4F-Ayc7jlA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Ochoa, Diego Alejandro</creator><creator>García, Jose Eduardo</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>XX2</scope></search><sort><creationdate>20160401</creationdate><title>Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime</title><author>Ochoa, Diego Alejandro ; García, Jose Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-a72929d25fbb0370a263692fcbb48847c0df35925ccf0ed777354b9ffd303d8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ceramics</topic><topic>Ceràmica piezoelèctrica</topic><topic>Characterization and Evaluation of Materials</topic><topic>Coercive force</topic><topic>Condensed Matter Physics</topic><topic>dielectric properties</topic><topic>Dielectrics</topic><topic>Dielèctrics</topic><topic>Distribution functions</topic><topic>Ferroelectric crystals</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricitat</topic><topic>Ferroelectricity</topic><topic>ferroelectrics</topic><topic>Física</topic><topic>Hysteresis</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Nonlinearity</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Piezoelectric ceramics</topic><topic>Preisach model</topic><topic>Processes</topic><topic>PZT</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ochoa, Diego Alejandro</creatorcontrib><creatorcontrib>García, Jose Eduardo</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ochoa, Diego Alejandro</au><au>García, Jose Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>122</volume><issue>4</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><artnum>263</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL–NTS properties soften around its orthorhombic to tetragonal phase transition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-9808-1</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2016-04, Vol.122 (4), p.1-6, Article 263 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_281355 |
source | Recercat; SpringerLink Journals - AutoHoldings |
subjects | ceramics Ceràmica piezoelèctrica Characterization and Evaluation of Materials Coercive force Condensed Matter Physics dielectric properties Dielectrics Dielèctrics Distribution functions Ferroelectric crystals Ferroelectric materials Ferroelectricitat Ferroelectricity ferroelectrics Física Hysteresis Machines Manufacturing Mathematical models Nanotechnology Nonlinearity Optical and Electronic Materials Physics Physics and Astronomy Piezoelectric ceramics Preisach model Processes PZT Surfaces and Interfaces Thin Films Àrees temàtiques de la UPC |
title | Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preisach%20modeling%20of%20temperature-dependent%20ferroelectric%20response%20of%20piezoceramics%20at%20sub-switching%20regime&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Ochoa,%20Diego%20Alejandro&rft.date=2016-04-01&rft.volume=122&rft.issue=4&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.artnum=263&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-9808-1&rft_dat=%3Cproquest_csuc_%3E1880024527%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880024527&rft_id=info:pmid/&rfr_iscdi=true |