Constrained distributed optimization: A population dynamics approach

Large-scale network systems involve a large number of states, which makes the design of real-time controllers a challenging task. A distributed controller design allows to reduce computational requirements since tasks are divided into different systems, allowing real-time processing. This paper prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2016-07, Vol.69, p.101-116
Hauptverfasser: Barreiro-Gomez, Julian, Quijano, Nicanor, Ocampo-Martinez, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue
container_start_page 101
container_title Automatica (Oxford)
container_volume 69
creator Barreiro-Gomez, Julian
Quijano, Nicanor
Ocampo-Martinez, Carlos
description Large-scale network systems involve a large number of states, which makes the design of real-time controllers a challenging task. A distributed controller design allows to reduce computational requirements since tasks are divided into different systems, allowing real-time processing. This paper proposes a novel methodology for solving constrained optimization problems in a distributed way inspired by population dynamics. This methodology consists of an extension of a population dynamics equation and the introduction of a mass dynamics equation. The proposed methodology divides the problem into smaller sub-problems, whose feasible regions vary over time achieving an agreement to solve the global problem. The methodology also guarantees attraction to the feasible region and allows to have few changes in the decision-making design when a network suffers the addition/removal of nodes/edges. Then, distributed controllers are designed with the proposed methodology and applied to the large-scale Barcelona Drinking Water Network (BDWN). Some simulations are presented and discussed in order to illustrate the control performance.
doi_str_mv 10.1016/j.automatica.2016.02.004
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_273099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000510981630036X</els_id><sourcerecordid>1825481592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-61b8eb82899b395172d7eb1a1bd6ef470c9805013ee8e51d0f3ad5fabfce6b453</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwD1mySRg7L4ddKU-pEhtYW449Ea6SONgOUvl6XIrUJQtr5o58r2YOIQmFjAKtbraZnIMdZDBKZixOMmAZQHFCFpTXecp4Xp2SBQCUKYWGn5ML77dRFpSzBblf29EHJ82IOtEmtqadQ-ztFMxgvmOuHW-TVTLZae5_VaJ3oxyM8omcJmel-rgkZ53sPV791SV5f3x4Wz-nm9enl_Vqk6qiyENa0ZZjyxlvmjZvSlozXWNLJW11hV1Rg2o4lEBzRI4l1dDlUpedbDuFVVuU-ZLQQ67ysxIOFTolg7DSHMX-MaiZYHUOTRM91wdPXPVzRh_EYLzCvpcj2tmLSKEsOC0bFr_yv3hnvXfYicmZQbqdoCD2sMVWHGGLPWwBTESU0Xp3sGI8_8ugE14ZHBVqEzcLQlvzf8gPhxWOmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825481592</pqid></control><display><type>article</type><title>Constrained distributed optimization: A population dynamics approach</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Barreiro-Gomez, Julian ; Quijano, Nicanor ; Ocampo-Martinez, Carlos</creator><creatorcontrib>Barreiro-Gomez, Julian ; Quijano, Nicanor ; Ocampo-Martinez, Carlos</creatorcontrib><description>Large-scale network systems involve a large number of states, which makes the design of real-time controllers a challenging task. A distributed controller design allows to reduce computational requirements since tasks are divided into different systems, allowing real-time processing. This paper proposes a novel methodology for solving constrained optimization problems in a distributed way inspired by population dynamics. This methodology consists of an extension of a population dynamics equation and the introduction of a mass dynamics equation. The proposed methodology divides the problem into smaller sub-problems, whose feasible regions vary over time achieving an agreement to solve the global problem. The methodology also guarantees attraction to the feasible region and allows to have few changes in the decision-making design when a network suffers the addition/removal of nodes/edges. Then, distributed controllers are designed with the proposed methodology and applied to the large-scale Barcelona Drinking Water Network (BDWN). Some simulations are presented and discussed in order to illustrate the control performance.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2016.02.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automàtica i control ; Controllers ; Design engineering ; Distributed optimization ; Dynamical systems ; Dynamics ; Evolutionary game theory ; Informàtica ; Large scale systems ; Mathematical analysis ; Methodology ; Networks ; Sistemes a gran escala ; Tasks ; Àrees temàtiques de la UPC</subject><ispartof>Automatica (Oxford), 2016-07, Vol.69, p.101-116</ispartof><rights>2016 Elsevier Ltd</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-61b8eb82899b395172d7eb1a1bd6ef470c9805013ee8e51d0f3ad5fabfce6b453</citedby><cites>FETCH-LOGICAL-c443t-61b8eb82899b395172d7eb1a1bd6ef470c9805013ee8e51d0f3ad5fabfce6b453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000510981630036X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Barreiro-Gomez, Julian</creatorcontrib><creatorcontrib>Quijano, Nicanor</creatorcontrib><creatorcontrib>Ocampo-Martinez, Carlos</creatorcontrib><title>Constrained distributed optimization: A population dynamics approach</title><title>Automatica (Oxford)</title><description>Large-scale network systems involve a large number of states, which makes the design of real-time controllers a challenging task. A distributed controller design allows to reduce computational requirements since tasks are divided into different systems, allowing real-time processing. This paper proposes a novel methodology for solving constrained optimization problems in a distributed way inspired by population dynamics. This methodology consists of an extension of a population dynamics equation and the introduction of a mass dynamics equation. The proposed methodology divides the problem into smaller sub-problems, whose feasible regions vary over time achieving an agreement to solve the global problem. The methodology also guarantees attraction to the feasible region and allows to have few changes in the decision-making design when a network suffers the addition/removal of nodes/edges. Then, distributed controllers are designed with the proposed methodology and applied to the large-scale Barcelona Drinking Water Network (BDWN). Some simulations are presented and discussed in order to illustrate the control performance.</description><subject>Automàtica i control</subject><subject>Controllers</subject><subject>Design engineering</subject><subject>Distributed optimization</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Evolutionary game theory</subject><subject>Informàtica</subject><subject>Large scale systems</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>Networks</subject><subject>Sistemes a gran escala</subject><subject>Tasks</subject><subject>Àrees temàtiques de la UPC</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkMtOwzAQRS0EEqXwD1mySRg7L4ddKU-pEhtYW449Ea6SONgOUvl6XIrUJQtr5o58r2YOIQmFjAKtbraZnIMdZDBKZixOMmAZQHFCFpTXecp4Xp2SBQCUKYWGn5ML77dRFpSzBblf29EHJ82IOtEmtqadQ-ztFMxgvmOuHW-TVTLZae5_VaJ3oxyM8omcJmel-rgkZ53sPV791SV5f3x4Wz-nm9enl_Vqk6qiyENa0ZZjyxlvmjZvSlozXWNLJW11hV1Rg2o4lEBzRI4l1dDlUpedbDuFVVuU-ZLQQ67ysxIOFTolg7DSHMX-MaiZYHUOTRM91wdPXPVzRh_EYLzCvpcj2tmLSKEsOC0bFr_yv3hnvXfYicmZQbqdoCD2sMVWHGGLPWwBTESU0Xp3sGI8_8ugE14ZHBVqEzcLQlvzf8gPhxWOmw</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Barreiro-Gomez, Julian</creator><creator>Quijano, Nicanor</creator><creator>Ocampo-Martinez, Carlos</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope></search><sort><creationdate>201607</creationdate><title>Constrained distributed optimization: A population dynamics approach</title><author>Barreiro-Gomez, Julian ; Quijano, Nicanor ; Ocampo-Martinez, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-61b8eb82899b395172d7eb1a1bd6ef470c9805013ee8e51d0f3ad5fabfce6b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automàtica i control</topic><topic>Controllers</topic><topic>Design engineering</topic><topic>Distributed optimization</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Evolutionary game theory</topic><topic>Informàtica</topic><topic>Large scale systems</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>Networks</topic><topic>Sistemes a gran escala</topic><topic>Tasks</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barreiro-Gomez, Julian</creatorcontrib><creatorcontrib>Quijano, Nicanor</creatorcontrib><creatorcontrib>Ocampo-Martinez, Carlos</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barreiro-Gomez, Julian</au><au>Quijano, Nicanor</au><au>Ocampo-Martinez, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained distributed optimization: A population dynamics approach</atitle><jtitle>Automatica (Oxford)</jtitle><date>2016-07</date><risdate>2016</risdate><volume>69</volume><spage>101</spage><epage>116</epage><pages>101-116</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>Large-scale network systems involve a large number of states, which makes the design of real-time controllers a challenging task. A distributed controller design allows to reduce computational requirements since tasks are divided into different systems, allowing real-time processing. This paper proposes a novel methodology for solving constrained optimization problems in a distributed way inspired by population dynamics. This methodology consists of an extension of a population dynamics equation and the introduction of a mass dynamics equation. The proposed methodology divides the problem into smaller sub-problems, whose feasible regions vary over time achieving an agreement to solve the global problem. The methodology also guarantees attraction to the feasible region and allows to have few changes in the decision-making design when a network suffers the addition/removal of nodes/edges. Then, distributed controllers are designed with the proposed methodology and applied to the large-scale Barcelona Drinking Water Network (BDWN). Some simulations are presented and discussed in order to illustrate the control performance.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2016.02.004</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2016-07, Vol.69, p.101-116
issn 0005-1098
1873-2836
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_273099
source Recercat; Elsevier ScienceDirect Journals
subjects Automàtica i control
Controllers
Design engineering
Distributed optimization
Dynamical systems
Dynamics
Evolutionary game theory
Informàtica
Large scale systems
Mathematical analysis
Methodology
Networks
Sistemes a gran escala
Tasks
Àrees temàtiques de la UPC
title Constrained distributed optimization: A population dynamics approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20distributed%20optimization:%20A%20population%20dynamics%20approach&rft.jtitle=Automatica%20(Oxford)&rft.au=Barreiro-Gomez,%20Julian&rft.date=2016-07&rft.volume=69&rft.spage=101&rft.epage=116&rft.pages=101-116&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2016.02.004&rft_dat=%3Cproquest_csuc_%3E1825481592%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825481592&rft_id=info:pmid/&rft_els_id=S000510981630036X&rfr_iscdi=true