Constrained distributed optimization: A population dynamics approach
Large-scale network systems involve a large number of states, which makes the design of real-time controllers a challenging task. A distributed controller design allows to reduce computational requirements since tasks are divided into different systems, allowing real-time processing. This paper prop...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2016-07, Vol.69, p.101-116 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116 |
---|---|
container_issue | |
container_start_page | 101 |
container_title | Automatica (Oxford) |
container_volume | 69 |
creator | Barreiro-Gomez, Julian Quijano, Nicanor Ocampo-Martinez, Carlos |
description | Large-scale network systems involve a large number of states, which makes the design of real-time controllers a challenging task. A distributed controller design allows to reduce computational requirements since tasks are divided into different systems, allowing real-time processing. This paper proposes a novel methodology for solving constrained optimization problems in a distributed way inspired by population dynamics. This methodology consists of an extension of a population dynamics equation and the introduction of a mass dynamics equation. The proposed methodology divides the problem into smaller sub-problems, whose feasible regions vary over time achieving an agreement to solve the global problem. The methodology also guarantees attraction to the feasible region and allows to have few changes in the decision-making design when a network suffers the addition/removal of nodes/edges. Then, distributed controllers are designed with the proposed methodology and applied to the large-scale Barcelona Drinking Water Network (BDWN). Some simulations are presented and discussed in order to illustrate the control performance. |
doi_str_mv | 10.1016/j.automatica.2016.02.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_273099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000510981630036X</els_id><sourcerecordid>1825481592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-61b8eb82899b395172d7eb1a1bd6ef470c9805013ee8e51d0f3ad5fabfce6b453</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwD1mySRg7L4ddKU-pEhtYW449Ea6SONgOUvl6XIrUJQtr5o58r2YOIQmFjAKtbraZnIMdZDBKZixOMmAZQHFCFpTXecp4Xp2SBQCUKYWGn5ML77dRFpSzBblf29EHJ82IOtEmtqadQ-ztFMxgvmOuHW-TVTLZae5_VaJ3oxyM8omcJmel-rgkZ53sPV791SV5f3x4Wz-nm9enl_Vqk6qiyENa0ZZjyxlvmjZvSlozXWNLJW11hV1Rg2o4lEBzRI4l1dDlUpedbDuFVVuU-ZLQQ67ysxIOFTolg7DSHMX-MaiZYHUOTRM91wdPXPVzRh_EYLzCvpcj2tmLSKEsOC0bFr_yv3hnvXfYicmZQbqdoCD2sMVWHGGLPWwBTESU0Xp3sGI8_8ugE14ZHBVqEzcLQlvzf8gPhxWOmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825481592</pqid></control><display><type>article</type><title>Constrained distributed optimization: A population dynamics approach</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Barreiro-Gomez, Julian ; Quijano, Nicanor ; Ocampo-Martinez, Carlos</creator><creatorcontrib>Barreiro-Gomez, Julian ; Quijano, Nicanor ; Ocampo-Martinez, Carlos</creatorcontrib><description>Large-scale network systems involve a large number of states, which makes the design of real-time controllers a challenging task. A distributed controller design allows to reduce computational requirements since tasks are divided into different systems, allowing real-time processing. This paper proposes a novel methodology for solving constrained optimization problems in a distributed way inspired by population dynamics. This methodology consists of an extension of a population dynamics equation and the introduction of a mass dynamics equation. The proposed methodology divides the problem into smaller sub-problems, whose feasible regions vary over time achieving an agreement to solve the global problem. The methodology also guarantees attraction to the feasible region and allows to have few changes in the decision-making design when a network suffers the addition/removal of nodes/edges. Then, distributed controllers are designed with the proposed methodology and applied to the large-scale Barcelona Drinking Water Network (BDWN). Some simulations are presented and discussed in order to illustrate the control performance.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2016.02.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automàtica i control ; Controllers ; Design engineering ; Distributed optimization ; Dynamical systems ; Dynamics ; Evolutionary game theory ; Informàtica ; Large scale systems ; Mathematical analysis ; Methodology ; Networks ; Sistemes a gran escala ; Tasks ; Àrees temàtiques de la UPC</subject><ispartof>Automatica (Oxford), 2016-07, Vol.69, p.101-116</ispartof><rights>2016 Elsevier Ltd</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-61b8eb82899b395172d7eb1a1bd6ef470c9805013ee8e51d0f3ad5fabfce6b453</citedby><cites>FETCH-LOGICAL-c443t-61b8eb82899b395172d7eb1a1bd6ef470c9805013ee8e51d0f3ad5fabfce6b453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000510981630036X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Barreiro-Gomez, Julian</creatorcontrib><creatorcontrib>Quijano, Nicanor</creatorcontrib><creatorcontrib>Ocampo-Martinez, Carlos</creatorcontrib><title>Constrained distributed optimization: A population dynamics approach</title><title>Automatica (Oxford)</title><description>Large-scale network systems involve a large number of states, which makes the design of real-time controllers a challenging task. A distributed controller design allows to reduce computational requirements since tasks are divided into different systems, allowing real-time processing. This paper proposes a novel methodology for solving constrained optimization problems in a distributed way inspired by population dynamics. This methodology consists of an extension of a population dynamics equation and the introduction of a mass dynamics equation. The proposed methodology divides the problem into smaller sub-problems, whose feasible regions vary over time achieving an agreement to solve the global problem. The methodology also guarantees attraction to the feasible region and allows to have few changes in the decision-making design when a network suffers the addition/removal of nodes/edges. Then, distributed controllers are designed with the proposed methodology and applied to the large-scale Barcelona Drinking Water Network (BDWN). Some simulations are presented and discussed in order to illustrate the control performance.</description><subject>Automàtica i control</subject><subject>Controllers</subject><subject>Design engineering</subject><subject>Distributed optimization</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Evolutionary game theory</subject><subject>Informàtica</subject><subject>Large scale systems</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>Networks</subject><subject>Sistemes a gran escala</subject><subject>Tasks</subject><subject>Àrees temàtiques de la UPC</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkMtOwzAQRS0EEqXwD1mySRg7L4ddKU-pEhtYW449Ea6SONgOUvl6XIrUJQtr5o58r2YOIQmFjAKtbraZnIMdZDBKZixOMmAZQHFCFpTXecp4Xp2SBQCUKYWGn5ML77dRFpSzBblf29EHJ82IOtEmtqadQ-ztFMxgvmOuHW-TVTLZae5_VaJ3oxyM8omcJmel-rgkZ53sPV791SV5f3x4Wz-nm9enl_Vqk6qiyENa0ZZjyxlvmjZvSlozXWNLJW11hV1Rg2o4lEBzRI4l1dDlUpedbDuFVVuU-ZLQQ67ysxIOFTolg7DSHMX-MaiZYHUOTRM91wdPXPVzRh_EYLzCvpcj2tmLSKEsOC0bFr_yv3hnvXfYicmZQbqdoCD2sMVWHGGLPWwBTESU0Xp3sGI8_8ugE14ZHBVqEzcLQlvzf8gPhxWOmw</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Barreiro-Gomez, Julian</creator><creator>Quijano, Nicanor</creator><creator>Ocampo-Martinez, Carlos</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope></search><sort><creationdate>201607</creationdate><title>Constrained distributed optimization: A population dynamics approach</title><author>Barreiro-Gomez, Julian ; Quijano, Nicanor ; Ocampo-Martinez, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-61b8eb82899b395172d7eb1a1bd6ef470c9805013ee8e51d0f3ad5fabfce6b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automàtica i control</topic><topic>Controllers</topic><topic>Design engineering</topic><topic>Distributed optimization</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Evolutionary game theory</topic><topic>Informàtica</topic><topic>Large scale systems</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>Networks</topic><topic>Sistemes a gran escala</topic><topic>Tasks</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barreiro-Gomez, Julian</creatorcontrib><creatorcontrib>Quijano, Nicanor</creatorcontrib><creatorcontrib>Ocampo-Martinez, Carlos</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barreiro-Gomez, Julian</au><au>Quijano, Nicanor</au><au>Ocampo-Martinez, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained distributed optimization: A population dynamics approach</atitle><jtitle>Automatica (Oxford)</jtitle><date>2016-07</date><risdate>2016</risdate><volume>69</volume><spage>101</spage><epage>116</epage><pages>101-116</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>Large-scale network systems involve a large number of states, which makes the design of real-time controllers a challenging task. A distributed controller design allows to reduce computational requirements since tasks are divided into different systems, allowing real-time processing. This paper proposes a novel methodology for solving constrained optimization problems in a distributed way inspired by population dynamics. This methodology consists of an extension of a population dynamics equation and the introduction of a mass dynamics equation. The proposed methodology divides the problem into smaller sub-problems, whose feasible regions vary over time achieving an agreement to solve the global problem. The methodology also guarantees attraction to the feasible region and allows to have few changes in the decision-making design when a network suffers the addition/removal of nodes/edges. Then, distributed controllers are designed with the proposed methodology and applied to the large-scale Barcelona Drinking Water Network (BDWN). Some simulations are presented and discussed in order to illustrate the control performance.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2016.02.004</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2016-07, Vol.69, p.101-116 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_273099 |
source | Recercat; Elsevier ScienceDirect Journals |
subjects | Automàtica i control Controllers Design engineering Distributed optimization Dynamical systems Dynamics Evolutionary game theory Informàtica Large scale systems Mathematical analysis Methodology Networks Sistemes a gran escala Tasks Àrees temàtiques de la UPC |
title | Constrained distributed optimization: A population dynamics approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20distributed%20optimization:%20A%20population%20dynamics%20approach&rft.jtitle=Automatica%20(Oxford)&rft.au=Barreiro-Gomez,%20Julian&rft.date=2016-07&rft.volume=69&rft.spage=101&rft.epage=116&rft.pages=101-116&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2016.02.004&rft_dat=%3Cproquest_csuc_%3E1825481592%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825481592&rft_id=info:pmid/&rft_els_id=S000510981630036X&rfr_iscdi=true |