How Can SMEs Benefit from Big Data? Challenges and a Path Forward

Big data is big news, and large companies in all sectors are making significant advances in their customer relations, product selection and development and consequent profitability through using this valuable commodity. Small and medium enterprises (SMEs) have proved themselves to be slow adopters o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2016-10, Vol.32 (6), p.2151-2164
Hauptverfasser: Coleman, Shirley, Göb, Rainer, Manco, Giuseppe, Pievatolo, Antonio, Tort-Martorell, Xavier, Reis, Marco Seabra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2164
container_issue 6
container_start_page 2151
container_title Quality and reliability engineering international
container_volume 32
creator Coleman, Shirley
Göb, Rainer
Manco, Giuseppe
Pievatolo, Antonio
Tort-Martorell, Xavier
Reis, Marco Seabra
description Big data is big news, and large companies in all sectors are making significant advances in their customer relations, product selection and development and consequent profitability through using this valuable commodity. Small and medium enterprises (SMEs) have proved themselves to be slow adopters of the new technology of big data analytics and are in danger of being left behind. In Europe, SMEs are a vital part of the economy, and the challenges they encounter need to be addressed as a matter of urgency. This paper identifies barriers to SME uptake of big data analytics and recognises their complex challenge to all stakeholders, including national and international policy makers, IT, business management and data science communities. The paper proposes a big data maturity model for SMEs as a first step towards an SME roadmap to data analytics. It considers the ‘state‐of‐the‐art’ of IT with respect to usability and usefulness for SMEs and discusses how SMEs can overcome the barriers preventing them from adopting existing solutions. The paper then considers management perspectives and the role of maturity models in enhancing and structuring the adoption of data analytics in an organisation. The history of total quality management is reviewed to inform the core aspects of implanting a new paradigm. The paper concludes with recommendations to help SMEs develop their big data capability and enable them to continue as the engines of European industrial and business success. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/qre.2008
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_273001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835672075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4408-6042b1f7e2c6f608d04e7de54a58f21b4cef521c85ee003e3d8cadbb78ea607a3</originalsourceid><addsrcrecordid>eNp10FFP2zAQB3BrAmmlQ9pHsMTLXgJnO4mdJwRpoaCyDdjEo3V1LhBIE7BTdXz7ueo0tEk8WCdLv_9J92fss4BDASCPXjwdSgDzgY0EFEUicmV22Ah0ahIDQn9keyE8AkRcmBE7mfVrXmLHb6-mgZ9SR3Uz8Nr3S37a3PMJDnjMywdsW-ruKXDsKo78Ow4P_Kz3a_TVJ7ZbYxto_88cs59n0x_lLJl_O78oT-aJS1MwSQ6pXIhak3R5nYOpICVdUZZiZmopFqmjOpPCmYwIQJGqjMNqsdCGMAeNaszEdq8LK2c9OfIOB9tj8_bZPAlaWqlVPDFmvmwzz75_WVEY7LIJjtoWO-pXwQqjslzHRBbpwX_0sV_5Ll4UlTCF0qowbwud70PwVNtn3yzRv1oBdtO_jf3bTf-RJlu6blp6fdfZ65vpv74JA_3669E_2Vwrndm7r-d2ll6WUk1m9k79BkFYkgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1818937398</pqid></control><display><type>article</type><title>How Can SMEs Benefit from Big Data? Challenges and a Path Forward</title><source>Wiley Online Library Journals</source><source>Recercat</source><creator>Coleman, Shirley ; Göb, Rainer ; Manco, Giuseppe ; Pievatolo, Antonio ; Tort-Martorell, Xavier ; Reis, Marco Seabra</creator><creatorcontrib>Coleman, Shirley ; Göb, Rainer ; Manco, Giuseppe ; Pievatolo, Antonio ; Tort-Martorell, Xavier ; Reis, Marco Seabra</creatorcontrib><description>Big data is big news, and large companies in all sectors are making significant advances in their customer relations, product selection and development and consequent profitability through using this valuable commodity. Small and medium enterprises (SMEs) have proved themselves to be slow adopters of the new technology of big data analytics and are in danger of being left behind. In Europe, SMEs are a vital part of the economy, and the challenges they encounter need to be addressed as a matter of urgency. This paper identifies barriers to SME uptake of big data analytics and recognises their complex challenge to all stakeholders, including national and international policy makers, IT, business management and data science communities. The paper proposes a big data maturity model for SMEs as a first step towards an SME roadmap to data analytics. It considers the ‘state‐of‐the‐art’ of IT with respect to usability and usefulness for SMEs and discusses how SMEs can overcome the barriers preventing them from adopting existing solutions. The paper then considers management perspectives and the role of maturity models in enhancing and structuring the adoption of data analytics in an organisation. The history of total quality management is reviewed to inform the core aspects of implanting a new paradigm. The paper concludes with recommendations to help SMEs develop their big data capability and enable them to continue as the engines of European industrial and business success. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2008</identifier><identifier>CODEN: QREIE5</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Analytics ; Barriers ; Big data ; Business administration ; Data management ; data science ; Economics ; Empreses petites i mitjanes ; Investigació operativa ; Macrodades ; Management information systems ; Matemàtiques i estadística ; maturity model ; Policies ; Predictive analytics ; Sistemes d'informació per a la gestió ; skills shortage ; Small business ; Àrees temàtiques de la UPC</subject><ispartof>Quality and reliability engineering international, 2016-10, Vol.32 (6), p.2151-2164</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4408-6042b1f7e2c6f608d04e7de54a58f21b4cef521c85ee003e3d8cadbb78ea607a3</citedby><cites>FETCH-LOGICAL-c4408-6042b1f7e2c6f608d04e7de54a58f21b4cef521c85ee003e3d8cadbb78ea607a3</cites><orcidid>0000-0002-4997-8865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.2008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.2008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,26953,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Coleman, Shirley</creatorcontrib><creatorcontrib>Göb, Rainer</creatorcontrib><creatorcontrib>Manco, Giuseppe</creatorcontrib><creatorcontrib>Pievatolo, Antonio</creatorcontrib><creatorcontrib>Tort-Martorell, Xavier</creatorcontrib><creatorcontrib>Reis, Marco Seabra</creatorcontrib><title>How Can SMEs Benefit from Big Data? Challenges and a Path Forward</title><title>Quality and reliability engineering international</title><addtitle>Qual. Reliab. Engng. Int</addtitle><description>Big data is big news, and large companies in all sectors are making significant advances in their customer relations, product selection and development and consequent profitability through using this valuable commodity. Small and medium enterprises (SMEs) have proved themselves to be slow adopters of the new technology of big data analytics and are in danger of being left behind. In Europe, SMEs are a vital part of the economy, and the challenges they encounter need to be addressed as a matter of urgency. This paper identifies barriers to SME uptake of big data analytics and recognises their complex challenge to all stakeholders, including national and international policy makers, IT, business management and data science communities. The paper proposes a big data maturity model for SMEs as a first step towards an SME roadmap to data analytics. It considers the ‘state‐of‐the‐art’ of IT with respect to usability and usefulness for SMEs and discusses how SMEs can overcome the barriers preventing them from adopting existing solutions. The paper then considers management perspectives and the role of maturity models in enhancing and structuring the adoption of data analytics in an organisation. The history of total quality management is reviewed to inform the core aspects of implanting a new paradigm. The paper concludes with recommendations to help SMEs develop their big data capability and enable them to continue as the engines of European industrial and business success. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>Analytics</subject><subject>Barriers</subject><subject>Big data</subject><subject>Business administration</subject><subject>Data management</subject><subject>data science</subject><subject>Economics</subject><subject>Empreses petites i mitjanes</subject><subject>Investigació operativa</subject><subject>Macrodades</subject><subject>Management information systems</subject><subject>Matemàtiques i estadística</subject><subject>maturity model</subject><subject>Policies</subject><subject>Predictive analytics</subject><subject>Sistemes d'informació per a la gestió</subject><subject>skills shortage</subject><subject>Small business</subject><subject>Àrees temàtiques de la UPC</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp10FFP2zAQB3BrAmmlQ9pHsMTLXgJnO4mdJwRpoaCyDdjEo3V1LhBIE7BTdXz7ueo0tEk8WCdLv_9J92fss4BDASCPXjwdSgDzgY0EFEUicmV22Ah0ahIDQn9keyE8AkRcmBE7mfVrXmLHb6-mgZ9SR3Uz8Nr3S37a3PMJDnjMywdsW-ruKXDsKo78Ow4P_Kz3a_TVJ7ZbYxto_88cs59n0x_lLJl_O78oT-aJS1MwSQ6pXIhak3R5nYOpICVdUZZiZmopFqmjOpPCmYwIQJGqjMNqsdCGMAeNaszEdq8LK2c9OfIOB9tj8_bZPAlaWqlVPDFmvmwzz75_WVEY7LIJjtoWO-pXwQqjslzHRBbpwX_0sV_5Ll4UlTCF0qowbwud70PwVNtn3yzRv1oBdtO_jf3bTf-RJlu6blp6fdfZ65vpv74JA_3669E_2Vwrndm7r-d2ll6WUk1m9k79BkFYkgQ</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Coleman, Shirley</creator><creator>Göb, Rainer</creator><creator>Manco, Giuseppe</creator><creator>Pievatolo, Antonio</creator><creator>Tort-Martorell, Xavier</creator><creator>Reis, Marco Seabra</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0002-4997-8865</orcidid></search><sort><creationdate>201610</creationdate><title>How Can SMEs Benefit from Big Data? Challenges and a Path Forward</title><author>Coleman, Shirley ; Göb, Rainer ; Manco, Giuseppe ; Pievatolo, Antonio ; Tort-Martorell, Xavier ; Reis, Marco Seabra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4408-6042b1f7e2c6f608d04e7de54a58f21b4cef521c85ee003e3d8cadbb78ea607a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytics</topic><topic>Barriers</topic><topic>Big data</topic><topic>Business administration</topic><topic>Data management</topic><topic>data science</topic><topic>Economics</topic><topic>Empreses petites i mitjanes</topic><topic>Investigació operativa</topic><topic>Macrodades</topic><topic>Management information systems</topic><topic>Matemàtiques i estadística</topic><topic>maturity model</topic><topic>Policies</topic><topic>Predictive analytics</topic><topic>Sistemes d'informació per a la gestió</topic><topic>skills shortage</topic><topic>Small business</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coleman, Shirley</creatorcontrib><creatorcontrib>Göb, Rainer</creatorcontrib><creatorcontrib>Manco, Giuseppe</creatorcontrib><creatorcontrib>Pievatolo, Antonio</creatorcontrib><creatorcontrib>Tort-Martorell, Xavier</creatorcontrib><creatorcontrib>Reis, Marco Seabra</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Recercat</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coleman, Shirley</au><au>Göb, Rainer</au><au>Manco, Giuseppe</au><au>Pievatolo, Antonio</au><au>Tort-Martorell, Xavier</au><au>Reis, Marco Seabra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Can SMEs Benefit from Big Data? Challenges and a Path Forward</atitle><jtitle>Quality and reliability engineering international</jtitle><addtitle>Qual. Reliab. Engng. Int</addtitle><date>2016-10</date><risdate>2016</risdate><volume>32</volume><issue>6</issue><spage>2151</spage><epage>2164</epage><pages>2151-2164</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><coden>QREIE5</coden><abstract>Big data is big news, and large companies in all sectors are making significant advances in their customer relations, product selection and development and consequent profitability through using this valuable commodity. Small and medium enterprises (SMEs) have proved themselves to be slow adopters of the new technology of big data analytics and are in danger of being left behind. In Europe, SMEs are a vital part of the economy, and the challenges they encounter need to be addressed as a matter of urgency. This paper identifies barriers to SME uptake of big data analytics and recognises their complex challenge to all stakeholders, including national and international policy makers, IT, business management and data science communities. The paper proposes a big data maturity model for SMEs as a first step towards an SME roadmap to data analytics. It considers the ‘state‐of‐the‐art’ of IT with respect to usability and usefulness for SMEs and discusses how SMEs can overcome the barriers preventing them from adopting existing solutions. The paper then considers management perspectives and the role of maturity models in enhancing and structuring the adoption of data analytics in an organisation. The history of total quality management is reviewed to inform the core aspects of implanting a new paradigm. The paper concludes with recommendations to help SMEs develop their big data capability and enable them to continue as the engines of European industrial and business success. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/qre.2008</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4997-8865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2016-10, Vol.32 (6), p.2151-2164
issn 0748-8017
1099-1638
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_273001
source Wiley Online Library Journals; Recercat
subjects Analytics
Barriers
Big data
Business administration
Data management
data science
Economics
Empreses petites i mitjanes
Investigació operativa
Macrodades
Management information systems
Matemàtiques i estadística
maturity model
Policies
Predictive analytics
Sistemes d'informació per a la gestió
skills shortage
Small business
Àrees temàtiques de la UPC
title How Can SMEs Benefit from Big Data? Challenges and a Path Forward
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Can%20SMEs%20Benefit%20from%20Big%20Data?%20Challenges%20and%20a%20Path%20Forward&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Coleman,%20Shirley&rft.date=2016-10&rft.volume=32&rft.issue=6&rft.spage=2151&rft.epage=2164&rft.pages=2151-2164&rft.issn=0748-8017&rft.eissn=1099-1638&rft.coden=QREIE5&rft_id=info:doi/10.1002/qre.2008&rft_dat=%3Cproquest_csuc_%3E1835672075%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1818937398&rft_id=info:pmid/&rfr_iscdi=true