Repurposing designed mutants: a valuable strategy for computer-aided laccase engineering – the case of POXA1b

The broad specificity of laccases, a direct consequence of their shallow binding site, makes this class of enzymes a suitable template to build specificity toward putative substrates. In this work, a computational methodology that accumulates beneficial interactions between the enzyme and the substr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2017, Vol.7 (2), p.515-523
Hauptverfasser: Giacobelli, Valerio Guido, Monza, Emanuele, Fatima Lucas, M., Pezzella, Cinzia, Piscitelli, Alessandra, Guallar, Victor, Sannia, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 2
container_start_page 515
container_title Catalysis science & technology
container_volume 7
creator Giacobelli, Valerio Guido
Monza, Emanuele
Fatima Lucas, M.
Pezzella, Cinzia
Piscitelli, Alessandra
Guallar, Victor
Sannia, Giovanni
description The broad specificity of laccases, a direct consequence of their shallow binding site, makes this class of enzymes a suitable template to build specificity toward putative substrates. In this work, a computational methodology that accumulates beneficial interactions between the enzyme and the substrate in productive conformations is applied to oxidize 2,4-diamino-benzenesulfonic acid with POXA1b laccase. Although the experimental validation of two designed variants yielded negative results, most likely due to the hard oxidizability of the target substrate, molecular simulations suggest that a novel polar binding scaffold was designed to anchor negatively charged groups. Consequently, the oxidation of three such molecules, selected as representative of different classes of substances with different industrial applications, significantly improved. According to molecular simulations, the reason behind such an improvement lies in the more productive enzyme–substrate binding achieved thanks to the designed polar scaffold. In the future, mutant repurposing toward other substrates could be first carried out computationally, as done here, testing molecules that share some similarity with the initial target. In this way, repurposing would not be a mere safety net (as it is in the laboratory and as it was here) but rather a powerful approach to transform laccases into more efficient multitasking enzymes.
doi_str_mv 10.1039/C6CY02410F
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_272609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1879995455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-9a5f1f5ce7086f2a806ba8bc68b3cf3b82b1f5324a1d5f50fba8561aad1d46ea3</originalsourceid><addsrcrecordid>eNpFUctKxDAULaLgMM7GL8hShGqSNn24GwZfMDAiCroKt-lNrbRNTVJhdv6Df-iX2HEG58Llnst5bE4QnDJ6wWiUXy6SxSvlMaM3B8GE0zgO4zRhh_9YRMfBzLl3Ok6cM5rxSWAesR9sb1zdVaREV1cdlqQdPHTeXREgn9AMUDRInLfgsVoTbSxRpu0HjzaEuhz1DSgFDgl2Vd0h2k3Yz9c38W9I_gijycPqZc6Kk-BIQ-NwtrvT4Pnm-mlxFy5Xt_eL-TJUUZr7MAehmRYKU5olmkNGkwKyQiVZESkdFRkvRjriMbBSaEH1yIqEAZSsjBOEaBqwba5yg5IWFVoFXhqo989mOU255ClPaD56zrae3pqPAZ2Xbe0UNg10aAYnWZbmeS5iIUbp-S7eGucsatnbugW7lozKTRlyX0b0Cw44fd0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879995455</pqid></control><display><type>article</type><title>Repurposing designed mutants: a valuable strategy for computer-aided laccase engineering – the case of POXA1b</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Recercat</source><creator>Giacobelli, Valerio Guido ; Monza, Emanuele ; Fatima Lucas, M. ; Pezzella, Cinzia ; Piscitelli, Alessandra ; Guallar, Victor ; Sannia, Giovanni</creator><creatorcontrib>Giacobelli, Valerio Guido ; Monza, Emanuele ; Fatima Lucas, M. ; Pezzella, Cinzia ; Piscitelli, Alessandra ; Guallar, Victor ; Sannia, Giovanni</creatorcontrib><description>The broad specificity of laccases, a direct consequence of their shallow binding site, makes this class of enzymes a suitable template to build specificity toward putative substrates. In this work, a computational methodology that accumulates beneficial interactions between the enzyme and the substrate in productive conformations is applied to oxidize 2,4-diamino-benzenesulfonic acid with POXA1b laccase. Although the experimental validation of two designed variants yielded negative results, most likely due to the hard oxidizability of the target substrate, molecular simulations suggest that a novel polar binding scaffold was designed to anchor negatively charged groups. Consequently, the oxidation of three such molecules, selected as representative of different classes of substances with different industrial applications, significantly improved. According to molecular simulations, the reason behind such an improvement lies in the more productive enzyme–substrate binding achieved thanks to the designed polar scaffold. In the future, mutant repurposing toward other substrates could be first carried out computationally, as done here, testing molecules that share some similarity with the initial target. In this way, repurposing would not be a mere safety net (as it is in the laboratory and as it was here) but rather a powerful approach to transform laccases into more efficient multitasking enzymes.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/C6CY02410F</identifier><language>eng</language><publisher>Royal Society of Chemistry</publisher><subject>Anchors ; Binding ; Biotechnology ; Biotecnologia microbiana ; Computation ; Computer simulation ; Enginyeria biomèdica ; Enzims ; Enzyme complexes ; Enzymes ; Fungal laccases ; Laccase ; POXA1b laccase ; Scaffolds ; Substrates ; Àrees temàtiques de la UPC</subject><ispartof>Catalysis science &amp; technology, 2017, Vol.7 (2), p.515-523</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-9a5f1f5ce7086f2a806ba8bc68b3cf3b82b1f5324a1d5f50fba8561aad1d46ea3</citedby><cites>FETCH-LOGICAL-c379t-9a5f1f5ce7086f2a806ba8bc68b3cf3b82b1f5324a1d5f50fba8561aad1d46ea3</cites><orcidid>0000-0002-3443-9447 ; 0000-0002-3818-6539 ; 0000-0002-7986-6223 ; 0000-0001-8672-9940 ; 0000-0002-6086-3671 ; 0000-0001-5694-472X ; 0000-0002-4580-1114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,26951,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Giacobelli, Valerio Guido</creatorcontrib><creatorcontrib>Monza, Emanuele</creatorcontrib><creatorcontrib>Fatima Lucas, M.</creatorcontrib><creatorcontrib>Pezzella, Cinzia</creatorcontrib><creatorcontrib>Piscitelli, Alessandra</creatorcontrib><creatorcontrib>Guallar, Victor</creatorcontrib><creatorcontrib>Sannia, Giovanni</creatorcontrib><title>Repurposing designed mutants: a valuable strategy for computer-aided laccase engineering – the case of POXA1b</title><title>Catalysis science &amp; technology</title><description>The broad specificity of laccases, a direct consequence of their shallow binding site, makes this class of enzymes a suitable template to build specificity toward putative substrates. In this work, a computational methodology that accumulates beneficial interactions between the enzyme and the substrate in productive conformations is applied to oxidize 2,4-diamino-benzenesulfonic acid with POXA1b laccase. Although the experimental validation of two designed variants yielded negative results, most likely due to the hard oxidizability of the target substrate, molecular simulations suggest that a novel polar binding scaffold was designed to anchor negatively charged groups. Consequently, the oxidation of three such molecules, selected as representative of different classes of substances with different industrial applications, significantly improved. According to molecular simulations, the reason behind such an improvement lies in the more productive enzyme–substrate binding achieved thanks to the designed polar scaffold. In the future, mutant repurposing toward other substrates could be first carried out computationally, as done here, testing molecules that share some similarity with the initial target. In this way, repurposing would not be a mere safety net (as it is in the laboratory and as it was here) but rather a powerful approach to transform laccases into more efficient multitasking enzymes.</description><subject>Anchors</subject><subject>Binding</subject><subject>Biotechnology</subject><subject>Biotecnologia microbiana</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Enginyeria biomèdica</subject><subject>Enzims</subject><subject>Enzyme complexes</subject><subject>Enzymes</subject><subject>Fungal laccases</subject><subject>Laccase</subject><subject>POXA1b laccase</subject><subject>Scaffolds</subject><subject>Substrates</subject><subject>Àrees temàtiques de la UPC</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNpFUctKxDAULaLgMM7GL8hShGqSNn24GwZfMDAiCroKt-lNrbRNTVJhdv6Df-iX2HEG58Llnst5bE4QnDJ6wWiUXy6SxSvlMaM3B8GE0zgO4zRhh_9YRMfBzLl3Ok6cM5rxSWAesR9sb1zdVaREV1cdlqQdPHTeXREgn9AMUDRInLfgsVoTbSxRpu0HjzaEuhz1DSgFDgl2Vd0h2k3Yz9c38W9I_gijycPqZc6Kk-BIQ-NwtrvT4Pnm-mlxFy5Xt_eL-TJUUZr7MAehmRYKU5olmkNGkwKyQiVZESkdFRkvRjriMbBSaEH1yIqEAZSsjBOEaBqwba5yg5IWFVoFXhqo989mOU255ClPaD56zrae3pqPAZ2Xbe0UNg10aAYnWZbmeS5iIUbp-S7eGucsatnbugW7lozKTRlyX0b0Cw44fd0</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Giacobelli, Valerio Guido</creator><creator>Monza, Emanuele</creator><creator>Fatima Lucas, M.</creator><creator>Pezzella, Cinzia</creator><creator>Piscitelli, Alessandra</creator><creator>Guallar, Victor</creator><creator>Sannia, Giovanni</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0002-3443-9447</orcidid><orcidid>https://orcid.org/0000-0002-3818-6539</orcidid><orcidid>https://orcid.org/0000-0002-7986-6223</orcidid><orcidid>https://orcid.org/0000-0001-8672-9940</orcidid><orcidid>https://orcid.org/0000-0002-6086-3671</orcidid><orcidid>https://orcid.org/0000-0001-5694-472X</orcidid><orcidid>https://orcid.org/0000-0002-4580-1114</orcidid></search><sort><creationdate>2017</creationdate><title>Repurposing designed mutants: a valuable strategy for computer-aided laccase engineering – the case of POXA1b</title><author>Giacobelli, Valerio Guido ; Monza, Emanuele ; Fatima Lucas, M. ; Pezzella, Cinzia ; Piscitelli, Alessandra ; Guallar, Victor ; Sannia, Giovanni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-9a5f1f5ce7086f2a806ba8bc68b3cf3b82b1f5324a1d5f50fba8561aad1d46ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anchors</topic><topic>Binding</topic><topic>Biotechnology</topic><topic>Biotecnologia microbiana</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Enginyeria biomèdica</topic><topic>Enzims</topic><topic>Enzyme complexes</topic><topic>Enzymes</topic><topic>Fungal laccases</topic><topic>Laccase</topic><topic>POXA1b laccase</topic><topic>Scaffolds</topic><topic>Substrates</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giacobelli, Valerio Guido</creatorcontrib><creatorcontrib>Monza, Emanuele</creatorcontrib><creatorcontrib>Fatima Lucas, M.</creatorcontrib><creatorcontrib>Pezzella, Cinzia</creatorcontrib><creatorcontrib>Piscitelli, Alessandra</creatorcontrib><creatorcontrib>Guallar, Victor</creatorcontrib><creatorcontrib>Sannia, Giovanni</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Recercat</collection><jtitle>Catalysis science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giacobelli, Valerio Guido</au><au>Monza, Emanuele</au><au>Fatima Lucas, M.</au><au>Pezzella, Cinzia</au><au>Piscitelli, Alessandra</au><au>Guallar, Victor</au><au>Sannia, Giovanni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Repurposing designed mutants: a valuable strategy for computer-aided laccase engineering – the case of POXA1b</atitle><jtitle>Catalysis science &amp; technology</jtitle><date>2017</date><risdate>2017</risdate><volume>7</volume><issue>2</issue><spage>515</spage><epage>523</epage><pages>515-523</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>The broad specificity of laccases, a direct consequence of their shallow binding site, makes this class of enzymes a suitable template to build specificity toward putative substrates. In this work, a computational methodology that accumulates beneficial interactions between the enzyme and the substrate in productive conformations is applied to oxidize 2,4-diamino-benzenesulfonic acid with POXA1b laccase. Although the experimental validation of two designed variants yielded negative results, most likely due to the hard oxidizability of the target substrate, molecular simulations suggest that a novel polar binding scaffold was designed to anchor negatively charged groups. Consequently, the oxidation of three such molecules, selected as representative of different classes of substances with different industrial applications, significantly improved. According to molecular simulations, the reason behind such an improvement lies in the more productive enzyme–substrate binding achieved thanks to the designed polar scaffold. In the future, mutant repurposing toward other substrates could be first carried out computationally, as done here, testing molecules that share some similarity with the initial target. In this way, repurposing would not be a mere safety net (as it is in the laboratory and as it was here) but rather a powerful approach to transform laccases into more efficient multitasking enzymes.</abstract><pub>Royal Society of Chemistry</pub><doi>10.1039/C6CY02410F</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3443-9447</orcidid><orcidid>https://orcid.org/0000-0002-3818-6539</orcidid><orcidid>https://orcid.org/0000-0002-7986-6223</orcidid><orcidid>https://orcid.org/0000-0001-8672-9940</orcidid><orcidid>https://orcid.org/0000-0002-6086-3671</orcidid><orcidid>https://orcid.org/0000-0001-5694-472X</orcidid><orcidid>https://orcid.org/0000-0002-4580-1114</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2044-4753
ispartof Catalysis science & technology, 2017, Vol.7 (2), p.515-523
issn 2044-4753
2044-4761
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_272609
source Royal Society Of Chemistry Journals 2008-; Recercat
subjects Anchors
Binding
Biotechnology
Biotecnologia microbiana
Computation
Computer simulation
Enginyeria biomèdica
Enzims
Enzyme complexes
Enzymes
Fungal laccases
Laccase
POXA1b laccase
Scaffolds
Substrates
Àrees temàtiques de la UPC
title Repurposing designed mutants: a valuable strategy for computer-aided laccase engineering – the case of POXA1b
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Repurposing%20designed%20mutants:%20a%20valuable%20strategy%20for%20computer-aided%20laccase%20engineering%20%E2%80%93%20the%20case%20of%20POXA1b&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Giacobelli,%20Valerio%20Guido&rft.date=2017&rft.volume=7&rft.issue=2&rft.spage=515&rft.epage=523&rft.pages=515-523&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/C6CY02410F&rft_dat=%3Cproquest_csuc_%3E1879995455%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1879995455&rft_id=info:pmid/&rfr_iscdi=true