Enhancing Energy Production with Exascale HPC Methods
High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exas...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Text Resource |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose
processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale
simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.
The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of
Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and
from the Brazilian Ministry of Science, Technology and Innovation through Rede
Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the
Intel Corporation, which enabled us to obtain the presented experimental results in
uncertainty quantification in seismic imaging |
---|