A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates

This paper presents a new methodology to compute guaranteed upper bounds for the energy norm of the error in the context of linear finite element approximations of the reaction–diffusion equation. The new approach revisits the ideas in Parés et al. (2009) [6, 4], with the goal of substantially reduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2017-01, Vol.313, p.785-816
Hauptverfasser: Parés, N., Díez, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 816
container_issue
container_start_page 785
container_title Computer methods in applied mechanics and engineering
container_volume 313
creator Parés, N.
Díez, P.
description This paper presents a new methodology to compute guaranteed upper bounds for the energy norm of the error in the context of linear finite element approximations of the reaction–diffusion equation. The new approach revisits the ideas in Parés et al. (2009) [6, 4], with the goal of substantially reducing the computational cost of the flux-free method while retaining the good quality of the bounds. The new methodology provides also a technique to compute equilibrated boundary tractions improving the quality of standard equilibration strategies. The zeroth-order equilibration conditions are imposed using an alternative less restrictive form of the first-order equilibration conditions, along with a new efficient minimization criterion. This new equilibration strategy provides much more accurate upper bounds for the energy and requires only doubling the dimension of the local linear systems of equations to be solved.
doi_str_mv 10.1016/j.cma.2016.10.010
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_272026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578251630250X</els_id><sourcerecordid>1920787905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-b5c139f28029f9c470d077ac9e435304f7b6004d82acfe5ac65db3a7be4156a3</originalsourceid><addsrcrecordid>eNp9kF1LwzAYhYMoOKc_wLuA161J-pEWr8bwCwbe7D6kyRtN2dotaaf-e986Qa8MhOSEnJdzHkKuOUs54-Vtm5qtTgVeUaeMsxMy45WsE8Gz6pTMGMuLRFaiOCcXMbYMV8XFjOgF7eCdwn70G98EPYClAaK3o97QLQxvvaV-uwv9wXevVBszBm0-qe4sBee88dCh7B11m_EjcQGAQgh9oBAHv8Vx8ZKcOb2JcPVzzsn64X69fEpWL4_Py8UqMXnFhqQpDM9qJyomalebXDLLpNSmhjwrMpY72ZRYwlZCGweFNmVhm0zLBnJelDqbE34ca-JoVAADwehB9dr_imkLJoUSUjBRoufm6MF--xETq7YfQ4cpFa_xI_JjxZ_JoY8xgFO7gNXCp-JMTfBVqxC-muBPTwgfPXdHD2Djg4eg4jcqsB7TDMr2_h_3F8OLjQ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920787905</pqid></control><display><type>article</type><title>A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Parés, N. ; Díez, P.</creator><creatorcontrib>Parés, N. ; Díez, P.</creatorcontrib><description>This paper presents a new methodology to compute guaranteed upper bounds for the energy norm of the error in the context of linear finite element approximations of the reaction–diffusion equation. The new approach revisits the ideas in Parés et al. (2009) [6, 4], with the goal of substantially reducing the computational cost of the flux-free method while retaining the good quality of the bounds. The new methodology provides also a technique to compute equilibrated boundary tractions improving the quality of standard equilibration strategies. The zeroth-order equilibration conditions are imposed using an alternative less restrictive form of the first-order equilibration conditions, along with a new efficient minimization criterion. This new equilibration strategy provides much more accurate upper bounds for the energy and requires only doubling the dimension of the local linear systems of equations to be solved.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2016.10.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accuracy ; Adaptivity ; Anàlisi numèrica ; Balancing ; Boundary layer ; Computational efficiency ; Cost engineering ; Equilibrated boundary tractions ; Exact/guaranteed/strict bounds ; Finite element method ; Flux ; Flux-free ; Fully computable a posteriori error estimation ; Linear systems ; Matemàtiques i estadística ; Mètodes en elements finits ; Numerical analysis ; Reaction–diffusion equation ; Upper bounds ; Àrees temàtiques de la UPC</subject><ispartof>Computer methods in applied mechanics and engineering, 2017-01, Vol.313, p.785-816</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 1, 2017</rights><rights>info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-b5c139f28029f9c470d077ac9e435304f7b6004d82acfe5ac65db3a7be4156a3</citedby><cites>FETCH-LOGICAL-c480t-b5c139f28029f9c470d077ac9e435304f7b6004d82acfe5ac65db3a7be4156a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S004578251630250X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Parés, N.</creatorcontrib><creatorcontrib>Díez, P.</creatorcontrib><title>A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates</title><title>Computer methods in applied mechanics and engineering</title><description>This paper presents a new methodology to compute guaranteed upper bounds for the energy norm of the error in the context of linear finite element approximations of the reaction–diffusion equation. The new approach revisits the ideas in Parés et al. (2009) [6, 4], with the goal of substantially reducing the computational cost of the flux-free method while retaining the good quality of the bounds. The new methodology provides also a technique to compute equilibrated boundary tractions improving the quality of standard equilibration strategies. The zeroth-order equilibration conditions are imposed using an alternative less restrictive form of the first-order equilibration conditions, along with a new efficient minimization criterion. This new equilibration strategy provides much more accurate upper bounds for the energy and requires only doubling the dimension of the local linear systems of equations to be solved.</description><subject>Accuracy</subject><subject>Adaptivity</subject><subject>Anàlisi numèrica</subject><subject>Balancing</subject><subject>Boundary layer</subject><subject>Computational efficiency</subject><subject>Cost engineering</subject><subject>Equilibrated boundary tractions</subject><subject>Exact/guaranteed/strict bounds</subject><subject>Finite element method</subject><subject>Flux</subject><subject>Flux-free</subject><subject>Fully computable a posteriori error estimation</subject><subject>Linear systems</subject><subject>Matemàtiques i estadística</subject><subject>Mètodes en elements finits</subject><subject>Numerical analysis</subject><subject>Reaction–diffusion equation</subject><subject>Upper bounds</subject><subject>Àrees temàtiques de la UPC</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kF1LwzAYhYMoOKc_wLuA161J-pEWr8bwCwbe7D6kyRtN2dotaaf-e986Qa8MhOSEnJdzHkKuOUs54-Vtm5qtTgVeUaeMsxMy45WsE8Gz6pTMGMuLRFaiOCcXMbYMV8XFjOgF7eCdwn70G98EPYClAaK3o97QLQxvvaV-uwv9wXevVBszBm0-qe4sBee88dCh7B11m_EjcQGAQgh9oBAHv8Vx8ZKcOb2JcPVzzsn64X69fEpWL4_Py8UqMXnFhqQpDM9qJyomalebXDLLpNSmhjwrMpY72ZRYwlZCGweFNmVhm0zLBnJelDqbE34ca-JoVAADwehB9dr_imkLJoUSUjBRoufm6MF--xETq7YfQ4cpFa_xI_JjxZ_JoY8xgFO7gNXCp-JMTfBVqxC-muBPTwgfPXdHD2Djg4eg4jcqsB7TDMr2_h_3F8OLjQ4</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Parés, N.</creator><creator>Díez, P.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope></search><sort><creationdate>20170101</creationdate><title>A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates</title><author>Parés, N. ; Díez, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-b5c139f28029f9c470d077ac9e435304f7b6004d82acfe5ac65db3a7be4156a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Adaptivity</topic><topic>Anàlisi numèrica</topic><topic>Balancing</topic><topic>Boundary layer</topic><topic>Computational efficiency</topic><topic>Cost engineering</topic><topic>Equilibrated boundary tractions</topic><topic>Exact/guaranteed/strict bounds</topic><topic>Finite element method</topic><topic>Flux</topic><topic>Flux-free</topic><topic>Fully computable a posteriori error estimation</topic><topic>Linear systems</topic><topic>Matemàtiques i estadística</topic><topic>Mètodes en elements finits</topic><topic>Numerical analysis</topic><topic>Reaction–diffusion equation</topic><topic>Upper bounds</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parés, N.</creatorcontrib><creatorcontrib>Díez, P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parés, N.</au><au>Díez, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>313</volume><spage>785</spage><epage>816</epage><pages>785-816</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>This paper presents a new methodology to compute guaranteed upper bounds for the energy norm of the error in the context of linear finite element approximations of the reaction–diffusion equation. The new approach revisits the ideas in Parés et al. (2009) [6, 4], with the goal of substantially reducing the computational cost of the flux-free method while retaining the good quality of the bounds. The new methodology provides also a technique to compute equilibrated boundary tractions improving the quality of standard equilibration strategies. The zeroth-order equilibration conditions are imposed using an alternative less restrictive form of the first-order equilibration conditions, along with a new efficient minimization criterion. This new equilibration strategy provides much more accurate upper bounds for the energy and requires only doubling the dimension of the local linear systems of equations to be solved.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2016.10.010</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2017-01, Vol.313, p.785-816
issn 0045-7825
1879-2138
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_272026
source Recercat; Elsevier ScienceDirect Journals
subjects Accuracy
Adaptivity
Anàlisi numèrica
Balancing
Boundary layer
Computational efficiency
Cost engineering
Equilibrated boundary tractions
Exact/guaranteed/strict bounds
Finite element method
Flux
Flux-free
Fully computable a posteriori error estimation
Linear systems
Matemàtiques i estadística
Mètodes en elements finits
Numerical analysis
Reaction–diffusion equation
Upper bounds
Àrees temàtiques de la UPC
title A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20equilibrated%20residual%20method%20improving%20accuracy%20and%20efficiency%20of%20flux-free%20error%20estimates&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Par%C3%A9s,%20N.&rft.date=2017-01-01&rft.volume=313&rft.spage=785&rft.epage=816&rft.pages=785-816&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2016.10.010&rft_dat=%3Cproquest_csuc_%3E1920787905%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920787905&rft_id=info:pmid/&rft_els_id=S004578251630250X&rfr_iscdi=true