New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures

•We present an approach for obtaining damage variables for Plastic Damage Models.•Approach is suitable for describing monotonic behavior of RC structures.•Advantages: mesh-insensitive, continuum mechanics-based, no calibration required.•A particular algorithm is presented and implemented in Abaqus....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures 2017-02, Vol.132, p.70-86
Hauptverfasser: Alfarah, B., López-Almansa, F., Oller, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue
container_start_page 70
container_title Engineering structures
container_volume 132
creator Alfarah, B.
López-Almansa, F.
Oller, S.
description •We present an approach for obtaining damage variables for Plastic Damage Models.•Approach is suitable for describing monotonic behavior of RC structures.•Advantages: mesh-insensitive, continuum mechanics-based, no calibration required.•A particular algorithm is presented and implemented in Abaqus. The behavior of reinforced concrete (RC) structures under severe demands, as strong ground motions, is highly complex; this is mainly due to joint operation of concrete and steel, with several coupled failure modes. Furthermore, given the increasing awareness and concern for the important seismic worldwide risk, new developments have arisen in earthquake engineering. Nonetheless, simplified numerical models are widely used (given their moderate computational cost), and many developments rely mainly on them. The authors have started a long-term research whose final objective is to provide, by using advanced numerical models, solid basis for these developments. Those models are based on continuum mechanics, and consider Plastic Damage Model to simulate concrete behavior. Within this context, this paper presents a new methodology to calculate damage variables evolution; the proposed approach is based in the Lubliner/Lee/Fenves formulation and provides closed-form expressions of the compressive and tensile damage variables in terms of the corresponding strains. This methodology does not require calibration with experimental results and incorporates a strategy to avoid mesh-sensitivity. A particular algorithm, suitable for implementation in Abaqus, is described. Mesh-insensitivity is validated in a simple tension example. Accuracy and reliability are verified by simulating a cyclic experiment on a plain concrete specimen. Two laboratory experiments consisting in pushing until failure two 2-D RC frames are simulated with the proposed approach to investigate its ability to reproduce actual monotonic behavior of RC structures; the obtained results are also compared with the aforementioned simplified models that are commonly employed in earthquake engineering.
doi_str_mv 10.1016/j.engstruct.2016.11.022
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_269995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029616312317</els_id><sourcerecordid>1932061056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-c80ac1307f0ff4e72eaee7cafe92468c736bba0315fdfb30a3e6f0c257d3b463</originalsourceid><addsrcrecordid>eNqFkVtLxDAQhYMouF5-gwGfWydJt2kfZb2CN8T3kKaTNUu30SRd8d_btaKPPgzDDHM-znAIOWGQM2Dl2SrHfhlTGEzK-bjIGcuB8x0yY5UUmRRc7JIZsIJlwOtynxzEuAIAXlUwI-0DftA1plff-s4vP6n1gRrdmaHTyfVL2uq1XiLd6OB002GkuPHdkJzvqevpU6djcoZeTFf3vsXuG_G8oJOnIWA8IntWdxGPf_ohebm6fFncZHeP17eL87vMFKJImalAGyZAWrC2QMlRI0qjLda8KCsjRdk0GgSb29Y2ArTA0oLhc9mKpijFIWET1sTBqIAGg9FJee3-hm1xkFzxsq7r-ag5nTRvwb8PGJNa-SH0o0vFasGhZDDfkuUPOfgYA1r1Ftxah0_FQG1TUCv1m4LapqAYU2MKo_J8UuL498ZhUNE47A22bvSUVOvdv4wvYHaWzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932061056</pqid></control><display><type>article</type><title>New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Recercat</source><creator>Alfarah, B. ; López-Almansa, F. ; Oller, S.</creator><creatorcontrib>Alfarah, B. ; López-Almansa, F. ; Oller, S.</creatorcontrib><description>•We present an approach for obtaining damage variables for Plastic Damage Models.•Approach is suitable for describing monotonic behavior of RC structures.•Advantages: mesh-insensitive, continuum mechanics-based, no calibration required.•A particular algorithm is presented and implemented in Abaqus. The behavior of reinforced concrete (RC) structures under severe demands, as strong ground motions, is highly complex; this is mainly due to joint operation of concrete and steel, with several coupled failure modes. Furthermore, given the increasing awareness and concern for the important seismic worldwide risk, new developments have arisen in earthquake engineering. Nonetheless, simplified numerical models are widely used (given their moderate computational cost), and many developments rely mainly on them. The authors have started a long-term research whose final objective is to provide, by using advanced numerical models, solid basis for these developments. Those models are based on continuum mechanics, and consider Plastic Damage Model to simulate concrete behavior. Within this context, this paper presents a new methodology to calculate damage variables evolution; the proposed approach is based in the Lubliner/Lee/Fenves formulation and provides closed-form expressions of the compressive and tensile damage variables in terms of the corresponding strains. This methodology does not require calibration with experimental results and incorporates a strategy to avoid mesh-sensitivity. A particular algorithm, suitable for implementation in Abaqus, is described. Mesh-insensitivity is validated in a simple tension example. Accuracy and reliability are verified by simulating a cyclic experiment on a plain concrete specimen. Two laboratory experiments consisting in pushing until failure two 2-D RC frames are simulated with the proposed approach to investigate its ability to reproduce actual monotonic behavior of RC structures; the obtained results are also compared with the aforementioned simplified models that are commonly employed in earthquake engineering.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2016.11.022</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>COMP-DES-MAT Project ; COMPDESMAT Project ; Computer applications ; Computer simulation ; Concrete construction ; Concrete Plastic Damage Model ; Concrete structures ; Construcció en formigó ; Construcció en formigó armat ; Continuum mechanics ; Coupled modes ; Damage assessment ; Damage variables calculation ; Disseny d'estructures ; Earthquake damage ; Earthquake engineering ; Earthquakes ; Edificació ; Elements constructius d'edificis ; Elements estructurals d'edificis ; Engineering ; Estructures, Teoria de les ; Evolution ; Exact solutions ; Failure modes ; Finite element method ; Mathematical models ; Mesh-sensitivity ; Methodology ; Numerical simulation ; Plastics ; Reinforced concrete ; Reinforced concrete construction ; Reinforcing steels ; Seismic activity ; Seismic behavior ; Seismic engineering ; Steel ; Structural analysis (Engineering) ; Structural damage ; Structural design ; Structural engineering ; Tension ; Àrees temàtiques de la UPC</subject><ispartof>Engineering structures, 2017-02, Vol.132, p.70-86</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2017</rights><rights>info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-c80ac1307f0ff4e72eaee7cafe92468c736bba0315fdfb30a3e6f0c257d3b463</citedby><cites>FETCH-LOGICAL-c434t-c80ac1307f0ff4e72eaee7cafe92468c736bba0315fdfb30a3e6f0c257d3b463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engstruct.2016.11.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,26957,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Alfarah, B.</creatorcontrib><creatorcontrib>López-Almansa, F.</creatorcontrib><creatorcontrib>Oller, S.</creatorcontrib><title>New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures</title><title>Engineering structures</title><description>•We present an approach for obtaining damage variables for Plastic Damage Models.•Approach is suitable for describing monotonic behavior of RC structures.•Advantages: mesh-insensitive, continuum mechanics-based, no calibration required.•A particular algorithm is presented and implemented in Abaqus. The behavior of reinforced concrete (RC) structures under severe demands, as strong ground motions, is highly complex; this is mainly due to joint operation of concrete and steel, with several coupled failure modes. Furthermore, given the increasing awareness and concern for the important seismic worldwide risk, new developments have arisen in earthquake engineering. Nonetheless, simplified numerical models are widely used (given their moderate computational cost), and many developments rely mainly on them. The authors have started a long-term research whose final objective is to provide, by using advanced numerical models, solid basis for these developments. Those models are based on continuum mechanics, and consider Plastic Damage Model to simulate concrete behavior. Within this context, this paper presents a new methodology to calculate damage variables evolution; the proposed approach is based in the Lubliner/Lee/Fenves formulation and provides closed-form expressions of the compressive and tensile damage variables in terms of the corresponding strains. This methodology does not require calibration with experimental results and incorporates a strategy to avoid mesh-sensitivity. A particular algorithm, suitable for implementation in Abaqus, is described. Mesh-insensitivity is validated in a simple tension example. Accuracy and reliability are verified by simulating a cyclic experiment on a plain concrete specimen. Two laboratory experiments consisting in pushing until failure two 2-D RC frames are simulated with the proposed approach to investigate its ability to reproduce actual monotonic behavior of RC structures; the obtained results are also compared with the aforementioned simplified models that are commonly employed in earthquake engineering.</description><subject>COMP-DES-MAT Project</subject><subject>COMPDESMAT Project</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Concrete construction</subject><subject>Concrete Plastic Damage Model</subject><subject>Concrete structures</subject><subject>Construcció en formigó</subject><subject>Construcció en formigó armat</subject><subject>Continuum mechanics</subject><subject>Coupled modes</subject><subject>Damage assessment</subject><subject>Damage variables calculation</subject><subject>Disseny d'estructures</subject><subject>Earthquake damage</subject><subject>Earthquake engineering</subject><subject>Earthquakes</subject><subject>Edificació</subject><subject>Elements constructius d'edificis</subject><subject>Elements estructurals d'edificis</subject><subject>Engineering</subject><subject>Estructures, Teoria de les</subject><subject>Evolution</subject><subject>Exact solutions</subject><subject>Failure modes</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Mesh-sensitivity</subject><subject>Methodology</subject><subject>Numerical simulation</subject><subject>Plastics</subject><subject>Reinforced concrete</subject><subject>Reinforced concrete construction</subject><subject>Reinforcing steels</subject><subject>Seismic activity</subject><subject>Seismic behavior</subject><subject>Seismic engineering</subject><subject>Steel</subject><subject>Structural analysis (Engineering)</subject><subject>Structural damage</subject><subject>Structural design</subject><subject>Structural engineering</subject><subject>Tension</subject><subject>Àrees temàtiques de la UPC</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkVtLxDAQhYMouF5-gwGfWydJt2kfZb2CN8T3kKaTNUu30SRd8d_btaKPPgzDDHM-znAIOWGQM2Dl2SrHfhlTGEzK-bjIGcuB8x0yY5UUmRRc7JIZsIJlwOtynxzEuAIAXlUwI-0DftA1plff-s4vP6n1gRrdmaHTyfVL2uq1XiLd6OB002GkuPHdkJzvqevpU6djcoZeTFf3vsXuG_G8oJOnIWA8IntWdxGPf_ohebm6fFncZHeP17eL87vMFKJImalAGyZAWrC2QMlRI0qjLda8KCsjRdk0GgSb29Y2ArTA0oLhc9mKpijFIWET1sTBqIAGg9FJee3-hm1xkFzxsq7r-ag5nTRvwb8PGJNa-SH0o0vFasGhZDDfkuUPOfgYA1r1Ftxah0_FQG1TUCv1m4LapqAYU2MKo_J8UuL498ZhUNE47A22bvSUVOvdv4wvYHaWzA</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Alfarah, B.</creator><creator>López-Almansa, F.</creator><creator>Oller, S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope><scope>XX2</scope></search><sort><creationdate>20170201</creationdate><title>New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures</title><author>Alfarah, B. ; López-Almansa, F. ; Oller, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-c80ac1307f0ff4e72eaee7cafe92468c736bba0315fdfb30a3e6f0c257d3b463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>COMP-DES-MAT Project</topic><topic>COMPDESMAT Project</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Concrete construction</topic><topic>Concrete Plastic Damage Model</topic><topic>Concrete structures</topic><topic>Construcció en formigó</topic><topic>Construcció en formigó armat</topic><topic>Continuum mechanics</topic><topic>Coupled modes</topic><topic>Damage assessment</topic><topic>Damage variables calculation</topic><topic>Disseny d'estructures</topic><topic>Earthquake damage</topic><topic>Earthquake engineering</topic><topic>Earthquakes</topic><topic>Edificació</topic><topic>Elements constructius d'edificis</topic><topic>Elements estructurals d'edificis</topic><topic>Engineering</topic><topic>Estructures, Teoria de les</topic><topic>Evolution</topic><topic>Exact solutions</topic><topic>Failure modes</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Mesh-sensitivity</topic><topic>Methodology</topic><topic>Numerical simulation</topic><topic>Plastics</topic><topic>Reinforced concrete</topic><topic>Reinforced concrete construction</topic><topic>Reinforcing steels</topic><topic>Seismic activity</topic><topic>Seismic behavior</topic><topic>Seismic engineering</topic><topic>Steel</topic><topic>Structural analysis (Engineering)</topic><topic>Structural damage</topic><topic>Structural design</topic><topic>Structural engineering</topic><topic>Tension</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alfarah, B.</creatorcontrib><creatorcontrib>López-Almansa, F.</creatorcontrib><creatorcontrib>Oller, S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Recercat</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alfarah, B.</au><au>López-Almansa, F.</au><au>Oller, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures</atitle><jtitle>Engineering structures</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>132</volume><spage>70</spage><epage>86</epage><pages>70-86</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>•We present an approach for obtaining damage variables for Plastic Damage Models.•Approach is suitable for describing monotonic behavior of RC structures.•Advantages: mesh-insensitive, continuum mechanics-based, no calibration required.•A particular algorithm is presented and implemented in Abaqus. The behavior of reinforced concrete (RC) structures under severe demands, as strong ground motions, is highly complex; this is mainly due to joint operation of concrete and steel, with several coupled failure modes. Furthermore, given the increasing awareness and concern for the important seismic worldwide risk, new developments have arisen in earthquake engineering. Nonetheless, simplified numerical models are widely used (given their moderate computational cost), and many developments rely mainly on them. The authors have started a long-term research whose final objective is to provide, by using advanced numerical models, solid basis for these developments. Those models are based on continuum mechanics, and consider Plastic Damage Model to simulate concrete behavior. Within this context, this paper presents a new methodology to calculate damage variables evolution; the proposed approach is based in the Lubliner/Lee/Fenves formulation and provides closed-form expressions of the compressive and tensile damage variables in terms of the corresponding strains. This methodology does not require calibration with experimental results and incorporates a strategy to avoid mesh-sensitivity. A particular algorithm, suitable for implementation in Abaqus, is described. Mesh-insensitivity is validated in a simple tension example. Accuracy and reliability are verified by simulating a cyclic experiment on a plain concrete specimen. Two laboratory experiments consisting in pushing until failure two 2-D RC frames are simulated with the proposed approach to investigate its ability to reproduce actual monotonic behavior of RC structures; the obtained results are also compared with the aforementioned simplified models that are commonly employed in earthquake engineering.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2016.11.022</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2017-02, Vol.132, p.70-86
issn 0141-0296
1873-7323
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_269995
source ScienceDirect Journals (5 years ago - present); Recercat
subjects COMP-DES-MAT Project
COMPDESMAT Project
Computer applications
Computer simulation
Concrete construction
Concrete Plastic Damage Model
Concrete structures
Construcció en formigó
Construcció en formigó armat
Continuum mechanics
Coupled modes
Damage assessment
Damage variables calculation
Disseny d'estructures
Earthquake damage
Earthquake engineering
Earthquakes
Edificació
Elements constructius d'edificis
Elements estructurals d'edificis
Engineering
Estructures, Teoria de les
Evolution
Exact solutions
Failure modes
Finite element method
Mathematical models
Mesh-sensitivity
Methodology
Numerical simulation
Plastics
Reinforced concrete
Reinforced concrete construction
Reinforcing steels
Seismic activity
Seismic behavior
Seismic engineering
Steel
Structural analysis (Engineering)
Structural damage
Structural design
Structural engineering
Tension
Àrees temàtiques de la UPC
title New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20methodology%20for%20calculating%20damage%20variables%20evolution%20in%20Plastic%20Damage%20Model%20for%20RC%20structures&rft.jtitle=Engineering%20structures&rft.au=Alfarah,%20B.&rft.date=2017-02-01&rft.volume=132&rft.spage=70&rft.epage=86&rft.pages=70-86&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2016.11.022&rft_dat=%3Cproquest_csuc_%3E1932061056%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932061056&rft_id=info:pmid/&rft_els_id=S0141029616312317&rfr_iscdi=true