Optimal personalized treatment rules for marketing interventions: A review of methods, a new proposal, and an insurance case study
In many important settings, subjects can show signi cant heterogeneity in response to a stimulus or treatment". For instance, a treatment that works for the overall population might be highly ine ective, or even harmful, for a subgroup of subjects with speci c characteristics. Similarly, a new...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Guelman, Leo Guillén, Montserrat Pérez Marín, Ana María |
description | In many important settings, subjects can show signi cant heterogeneity in response to a stimulus or treatment". For instance, a treatment that works for the overall population might be highly ine ective, or even harmful, for a subgroup of subjects with speci c characteristics. Similarly, a new treatment may not be better than an existing treatment in the overall population, but there is likely a subgroup of subjects who would bene t from it. The notion that "one size may not fit all" is becoming increasingly recognized in a wide variety of elds, ranging from economics to medicine. This has drawn signi cant attention to personalize the choice of treatment, so it is optimal for each individual. An optimal personalized treatment is the one that maximizes the probability of a desirable outcome. We call the task of learning the optimal personalized treatment "personalized treatment learning". From the statistical learning perspective, this problem imposes some challenges, primarily because the optimal treatment is unknown on a given training set. A number of statistical methods have been proposed recently to tackle this problem. |
format | Article |
fullrecord | <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_261608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_261608</sourcerecordid><originalsourceid>FETCH-csuc_recercat_oai_recercat_cat_2072_2616083</originalsourceid><addsrcrecordid>eNqdi7EKwkAQRNNYiPoP-wEKSYQodiKKnY19WC4bPbzchd29iJZ-uScI9haPYWZ44-x16tV26KAnluDR2Sc1oEyoHXkFjo4E2sDQId9Irb-A9Uo8pNcGLxvYAtNg6Q6hhY70GhqZA4JPS8-hD4Iudd8kkiqR0RsCg0IgGpvHNBu16IRm35xkxWF_3h0XRqKpmQyxQa0D2l_5UOarsi6rosrXy3-cN9mxV1k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal personalized treatment rules for marketing interventions: A review of methods, a new proposal, and an insurance case study</title><source>Recercat</source><creator>Guelman, Leo ; Guillén, Montserrat ; Pérez Marín, Ana María</creator><creatorcontrib>Guelman, Leo ; Guillén, Montserrat ; Pérez Marín, Ana María</creatorcontrib><description>In many important settings, subjects can show signi cant heterogeneity in response to a stimulus or treatment". For instance, a treatment that works for the overall population might be highly ine ective, or even harmful, for a subgroup of subjects with speci c characteristics. Similarly, a new treatment may not be better than an existing treatment in the overall population, but there is likely a subgroup of subjects who would bene t from it. The notion that "one size may not fit all" is becoming increasingly recognized in a wide variety of elds, ranging from economics to medicine. This has drawn signi cant attention to personalize the choice of treatment, so it is optimal for each individual. An optimal personalized treatment is the one that maximizes the probability of a desirable outcome. We call the task of learning the optimal personalized treatment "personalized treatment learning". From the statistical learning perspective, this problem imposes some challenges, primarily because the optimal treatment is unknown on a given training set. A number of statistical methods have been proposed recently to tackle this problem.</description><language>eng</language><publisher>Universitat de Barcelona. Riskcenter</publisher><subject>Assegurances ; Economic statistics ; Estadística econòmica ; Inference ; Inferència ; Insurance ; Marketing ; Màrqueting</subject><creationdate>2014</creationdate><rights>cc-by-nc-nd, (c) Guelman et al., 201x info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,26974</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/261608$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Guelman, Leo</creatorcontrib><creatorcontrib>Guillén, Montserrat</creatorcontrib><creatorcontrib>Pérez Marín, Ana María</creatorcontrib><title>Optimal personalized treatment rules for marketing interventions: A review of methods, a new proposal, and an insurance case study</title><description>In many important settings, subjects can show signi cant heterogeneity in response to a stimulus or treatment". For instance, a treatment that works for the overall population might be highly ine ective, or even harmful, for a subgroup of subjects with speci c characteristics. Similarly, a new treatment may not be better than an existing treatment in the overall population, but there is likely a subgroup of subjects who would bene t from it. The notion that "one size may not fit all" is becoming increasingly recognized in a wide variety of elds, ranging from economics to medicine. This has drawn signi cant attention to personalize the choice of treatment, so it is optimal for each individual. An optimal personalized treatment is the one that maximizes the probability of a desirable outcome. We call the task of learning the optimal personalized treatment "personalized treatment learning". From the statistical learning perspective, this problem imposes some challenges, primarily because the optimal treatment is unknown on a given training set. A number of statistical methods have been proposed recently to tackle this problem.</description><subject>Assegurances</subject><subject>Economic statistics</subject><subject>Estadística econòmica</subject><subject>Inference</subject><subject>Inferència</subject><subject>Insurance</subject><subject>Marketing</subject><subject>Màrqueting</subject><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqdi7EKwkAQRNNYiPoP-wEKSYQodiKKnY19WC4bPbzchd29iJZ-uScI9haPYWZ44-x16tV26KAnluDR2Sc1oEyoHXkFjo4E2sDQId9Irb-A9Uo8pNcGLxvYAtNg6Q6hhY70GhqZA4JPS8-hD4Iudd8kkiqR0RsCg0IgGpvHNBu16IRm35xkxWF_3h0XRqKpmQyxQa0D2l_5UOarsi6rosrXy3-cN9mxV1k</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Guelman, Leo</creator><creator>Guillén, Montserrat</creator><creator>Pérez Marín, Ana María</creator><general>Universitat de Barcelona. Riskcenter</general><scope>XX2</scope></search><sort><creationdate>2014</creationdate><title>Optimal personalized treatment rules for marketing interventions: A review of methods, a new proposal, and an insurance case study</title><author>Guelman, Leo ; Guillén, Montserrat ; Pérez Marín, Ana María</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_recercat_oai_recercat_cat_2072_2616083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Assegurances</topic><topic>Economic statistics</topic><topic>Estadística econòmica</topic><topic>Inference</topic><topic>Inferència</topic><topic>Insurance</topic><topic>Marketing</topic><topic>Màrqueting</topic><toplevel>online_resources</toplevel><creatorcontrib>Guelman, Leo</creatorcontrib><creatorcontrib>Guillén, Montserrat</creatorcontrib><creatorcontrib>Pérez Marín, Ana María</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guelman, Leo</au><au>Guillén, Montserrat</au><au>Pérez Marín, Ana María</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimal personalized treatment rules for marketing interventions: A review of methods, a new proposal, and an insurance case study</atitle><date>2014</date><risdate>2014</risdate><abstract>In many important settings, subjects can show signi cant heterogeneity in response to a stimulus or treatment". For instance, a treatment that works for the overall population might be highly ine ective, or even harmful, for a subgroup of subjects with speci c characteristics. Similarly, a new treatment may not be better than an existing treatment in the overall population, but there is likely a subgroup of subjects who would bene t from it. The notion that "one size may not fit all" is becoming increasingly recognized in a wide variety of elds, ranging from economics to medicine. This has drawn signi cant attention to personalize the choice of treatment, so it is optimal for each individual. An optimal personalized treatment is the one that maximizes the probability of a desirable outcome. We call the task of learning the optimal personalized treatment "personalized treatment learning". From the statistical learning perspective, this problem imposes some challenges, primarily because the optimal treatment is unknown on a given training set. A number of statistical methods have been proposed recently to tackle this problem.</abstract><pub>Universitat de Barcelona. Riskcenter</pub><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_261608 |
source | Recercat |
subjects | Assegurances Economic statistics Estadística econòmica Inference Inferència Insurance Marketing Màrqueting |
title | Optimal personalized treatment rules for marketing interventions: A review of methods, a new proposal, and an insurance case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimal%20personalized%20treatment%20rules%20for%20marketing%20interventions:%20A%20review%20of%20methods,%20a%20new%20proposal,%20and%20an%20insurance%20case%20study&rft.au=Guelman,%20Leo&rft.date=2014&rft_id=info:doi/&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_261608%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |