Dense Segmentation-Aware Descriptors

Dense descriptors are becoming increasingly popular in a host of tasks, such as dense image correspondence, bag-of-words image classification, and label transfer. However, the extraction of descriptors on generic image points, rather than selecting geometric features, requires rethinking how to achi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Trulls, Eduard, Kokkinos, Iasonas, Sanfeliu, Alberto, Moreno-Noguer, Francesc
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107
container_issue
container_start_page 83
container_title
container_volume
creator Trulls, Eduard
Kokkinos, Iasonas
Sanfeliu, Alberto
Moreno-Noguer, Francesc
description Dense descriptors are becoming increasingly popular in a host of tasks, such as dense image correspondence, bag-of-words image classification, and label transfer. However, the extraction of descriptors on generic image points, rather than selecting geometric features, requires rethinking how to achieve invariance to nuisance parameters. In this work we pursue invariance to occlusions and background changes by introducing segmentation information within dense feature construction. The core idea is to use the segmentation cues to downplay the features coming from image areas that are unlikely to belong to the same region as the feature point. We show how to integrate this idea with dense SIFT, as well as with the dense scale- and rotation-invariant descriptor (SID). We thereby deliver dense descriptors that are invariant to background changes, rotation, and/or scaling. We explore the merit of our technique in conjunction with large displacement motion estimation and wide-baseline stereo, and demonstrate that exploiting segmentation information yields clear improvements.
doi_str_mv 10.1007/978-3-319-23048-1_5
format Book Chapter
fullrecord <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_260614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_260614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1545-32af1155574f0484bdb812ce0742fa06a5c3ad5ed9f723c9638968f50933787a3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhiMiqLW_wEsPXqOTTL72WFqtQsGDeh6y2aSsH7slWfHvu63CHoaXZ2DegYexawG3AsDeVdZx5CgqLhGU44L0CbvEcXFkdTqBNedsXso7AAjtlHbugt2sY1fi4iXuvmI3-KHtO7788Tku1rGE3O6HPpcrdpb8Z4nz_5yxt4f719Uj3z5vnlbLLQ9CK81R-iSE1tqqdHhdN7UTMkSwSiYPxuuAvtGxqZKVGCqDrjIuaagQrbMeZ0z89YbyHSjHEHPwA_W-neAwEqwkacAINd2UfW67XcxU9_1HIQF08EOjH0IaDdDRB41-8BfuJVW0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Dense Segmentation-Aware Descriptors</title><source>Recercat</source><creator>Trulls, Eduard ; Kokkinos, Iasonas ; Sanfeliu, Alberto ; Moreno-Noguer, Francesc</creator><contributor>Liu, Ce ; Hassner, Tal</contributor><creatorcontrib>Trulls, Eduard ; Kokkinos, Iasonas ; Sanfeliu, Alberto ; Moreno-Noguer, Francesc ; Liu, Ce ; Hassner, Tal</creatorcontrib><description>Dense descriptors are becoming increasingly popular in a host of tasks, such as dense image correspondence, bag-of-words image classification, and label transfer. However, the extraction of descriptors on generic image points, rather than selecting geometric features, requires rethinking how to achieve invariance to nuisance parameters. In this work we pursue invariance to occlusions and background changes by introducing segmentation information within dense feature construction. The core idea is to use the segmentation cues to downplay the features coming from image areas that are unlikely to belong to the same region as the feature point. We show how to integrate this idea with dense SIFT, as well as with the dense scale- and rotation-invariant descriptor (SID). We thereby deliver dense descriptors that are invariant to background changes, rotation, and/or scaling. We explore the merit of our technique in conjunction with large displacement motion estimation and wide-baseline stereo, and demonstrate that exploiting segmentation information yields clear improvements.</description><identifier>ISBN: 3319230476</identifier><identifier>ISBN: 9783319230474</identifier><identifier>ISBN: 3319230484</identifier><identifier>ISBN: 9783319230481</identifier><identifier>EISBN: 3319230484</identifier><identifier>EISBN: 9783319230481</identifier><identifier>DOI: 10.1007/978-3-319-23048-1_5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Background Change ; Computer vision ; feature extraction ; Frame Pair ; Informàtica ; Intel·ligència artificial ; Optical Flow ; Segmentation Mask ; Sift Descriptor ; Visió per ordinador ; Àrees temàtiques de la UPC</subject><ispartof>Dense Image Correspondences for Computer Vision, 2016, p.83-107</ispartof><rights>Springer International Publishing Switzerland 2016</rights><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,779,780,885,26974</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/260614$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><contributor>Liu, Ce</contributor><contributor>Hassner, Tal</contributor><creatorcontrib>Trulls, Eduard</creatorcontrib><creatorcontrib>Kokkinos, Iasonas</creatorcontrib><creatorcontrib>Sanfeliu, Alberto</creatorcontrib><creatorcontrib>Moreno-Noguer, Francesc</creatorcontrib><title>Dense Segmentation-Aware Descriptors</title><title>Dense Image Correspondences for Computer Vision</title><description>Dense descriptors are becoming increasingly popular in a host of tasks, such as dense image correspondence, bag-of-words image classification, and label transfer. However, the extraction of descriptors on generic image points, rather than selecting geometric features, requires rethinking how to achieve invariance to nuisance parameters. In this work we pursue invariance to occlusions and background changes by introducing segmentation information within dense feature construction. The core idea is to use the segmentation cues to downplay the features coming from image areas that are unlikely to belong to the same region as the feature point. We show how to integrate this idea with dense SIFT, as well as with the dense scale- and rotation-invariant descriptor (SID). We thereby deliver dense descriptors that are invariant to background changes, rotation, and/or scaling. We explore the merit of our technique in conjunction with large displacement motion estimation and wide-baseline stereo, and demonstrate that exploiting segmentation information yields clear improvements.</description><subject>Background Change</subject><subject>Computer vision</subject><subject>feature extraction</subject><subject>Frame Pair</subject><subject>Informàtica</subject><subject>Intel·ligència artificial</subject><subject>Optical Flow</subject><subject>Segmentation Mask</subject><subject>Sift Descriptor</subject><subject>Visió per ordinador</subject><subject>Àrees temàtiques de la UPC</subject><isbn>3319230476</isbn><isbn>9783319230474</isbn><isbn>3319230484</isbn><isbn>9783319230481</isbn><isbn>3319230484</isbn><isbn>9783319230481</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2016</creationdate><recordtype>book_chapter</recordtype><sourceid>XX2</sourceid><recordid>eNpFkE1LAzEQhiMiqLW_wEsPXqOTTL72WFqtQsGDeh6y2aSsH7slWfHvu63CHoaXZ2DegYexawG3AsDeVdZx5CgqLhGU44L0CbvEcXFkdTqBNedsXso7AAjtlHbugt2sY1fi4iXuvmI3-KHtO7788Tku1rGE3O6HPpcrdpb8Z4nz_5yxt4f719Uj3z5vnlbLLQ9CK81R-iSE1tqqdHhdN7UTMkSwSiYPxuuAvtGxqZKVGCqDrjIuaagQrbMeZ0z89YbyHSjHEHPwA_W-neAwEqwkacAINd2UfW67XcxU9_1HIQF08EOjH0IaDdDRB41-8BfuJVW0</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Trulls, Eduard</creator><creator>Kokkinos, Iasonas</creator><creator>Sanfeliu, Alberto</creator><creator>Moreno-Noguer, Francesc</creator><general>Springer International Publishing</general><general>Springer</general><scope>XX2</scope></search><sort><creationdate>2016</creationdate><title>Dense Segmentation-Aware Descriptors</title><author>Trulls, Eduard ; Kokkinos, Iasonas ; Sanfeliu, Alberto ; Moreno-Noguer, Francesc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1545-32af1155574f0484bdb812ce0742fa06a5c3ad5ed9f723c9638968f50933787a3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Background Change</topic><topic>Computer vision</topic><topic>feature extraction</topic><topic>Frame Pair</topic><topic>Informàtica</topic><topic>Intel·ligència artificial</topic><topic>Optical Flow</topic><topic>Segmentation Mask</topic><topic>Sift Descriptor</topic><topic>Visió per ordinador</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>online_resources</toplevel><creatorcontrib>Trulls, Eduard</creatorcontrib><creatorcontrib>Kokkinos, Iasonas</creatorcontrib><creatorcontrib>Sanfeliu, Alberto</creatorcontrib><creatorcontrib>Moreno-Noguer, Francesc</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trulls, Eduard</au><au>Kokkinos, Iasonas</au><au>Sanfeliu, Alberto</au><au>Moreno-Noguer, Francesc</au><au>Liu, Ce</au><au>Hassner, Tal</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Dense Segmentation-Aware Descriptors</atitle><btitle>Dense Image Correspondences for Computer Vision</btitle><date>2016</date><risdate>2016</risdate><spage>83</spage><epage>107</epage><pages>83-107</pages><isbn>3319230476</isbn><isbn>9783319230474</isbn><isbn>3319230484</isbn><isbn>9783319230481</isbn><eisbn>3319230484</eisbn><eisbn>9783319230481</eisbn><abstract>Dense descriptors are becoming increasingly popular in a host of tasks, such as dense image correspondence, bag-of-words image classification, and label transfer. However, the extraction of descriptors on generic image points, rather than selecting geometric features, requires rethinking how to achieve invariance to nuisance parameters. In this work we pursue invariance to occlusions and background changes by introducing segmentation information within dense feature construction. The core idea is to use the segmentation cues to downplay the features coming from image areas that are unlikely to belong to the same region as the feature point. We show how to integrate this idea with dense SIFT, as well as with the dense scale- and rotation-invariant descriptor (SID). We thereby deliver dense descriptors that are invariant to background changes, rotation, and/or scaling. We explore the merit of our technique in conjunction with large displacement motion estimation and wide-baseline stereo, and demonstrate that exploiting segmentation information yields clear improvements.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/978-3-319-23048-1_5</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 3319230476
ispartof Dense Image Correspondences for Computer Vision, 2016, p.83-107
issn
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_260614
source Recercat
subjects Background Change
Computer vision
feature extraction
Frame Pair
Informàtica
Intel·ligència artificial
Optical Flow
Segmentation Mask
Sift Descriptor
Visió per ordinador
Àrees temàtiques de la UPC
title Dense Segmentation-Aware Descriptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Dense%20Segmentation-Aware%20Descriptors&rft.btitle=Dense%20Image%20Correspondences%20for%20Computer%20Vision&rft.au=Trulls,%20Eduard&rft.date=2016&rft.spage=83&rft.epage=107&rft.pages=83-107&rft.isbn=3319230476&rft.isbn_list=9783319230474&rft.isbn_list=3319230484&rft.isbn_list=9783319230481&rft_id=info:doi/10.1007/978-3-319-23048-1_5&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_260614%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&rft.eisbn=3319230484&rft.eisbn_list=9783319230481&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true