Phase-field modeling of fracture in linear thin shells
•First phase field model for fracture in thin shells.•The method does not require complex track cracking procedures. The crack's topology is the natural outcome of the analysis.•Efficient meshfree method for complex geometries. We present a phase-field model for fracture in Kirchoff–Love thin s...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied fracture mechanics 2014-02, Vol.69, p.102-109 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109 |
---|---|
container_issue | |
container_start_page | 102 |
container_title | Theoretical and applied fracture mechanics |
container_volume | 69 |
creator | Amiri, F. Millán, D. Shen, Y. Rabczuk, T. Arroyo, M. |
description | •First phase field model for fracture in thin shells.•The method does not require complex track cracking procedures. The crack's topology is the natural outcome of the analysis.•Efficient meshfree method for complex geometries.
We present a phase-field model for fracture in Kirchoff–Love thin shells using the local maximum-entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not require an explicit representation and tracking, which is advantage over techniques as the extended finite element method that requires tracking of the crack paths. The geometric description of the shell is based on statistical learning techniques that allow dealing with general point set surfaces avoiding a global parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show the flexibility and robustness of the present methodology for two examples: plate in tension and a set of open connected pipes. |
doi_str_mv | 10.1016/j.tafmec.2013.12.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_257867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167844213000815</els_id><sourcerecordid>1559653436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-5bd6002428bf26ccc43c7bf7e93a54d13536756541d7142250b87c4f20f610113</originalsourceid><addsrcrecordid>eNqFUU1LxDAQDaLg-vEPPPTopTWTz_YiyOIXLOhBzyGbTtws3XZNuoL_3ixd8KaHITPhveG9eYRcAa2AgrpZV6P1G3QVo8ArYBWl7IjMoNas1IrXx2SWYbqshWCn5CylNaWgoeEzol5XNmHpA3ZtsRla7EL_UQy-8NG6cRexCH2R_9DGYlzlPq2w69IFOfG2S3h5eM_J-8P92_ypXLw8Ps_vFqUTio6lXLYqaxGsXnqmnHOCO730GhtupWiBS660VFJAq0EwJumy1k54Rr3KzoCfE5j2urRzJqLD6OxoBht-h30xqplhUtdKZ871xNnG4XOHaTSbkFxWbXscdsnkS-gGqGzk_1ApGyW54CpDxUFJHFKK6M02ho2N3wao2adg1mZKwexTMMBMdp5ptxMN85W-AkaTXMDeYRuygdG0Q_h7wQ8Yfo8C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559653436</pqid></control><display><type>article</type><title>Phase-field modeling of fracture in linear thin shells</title><source>Elsevier ScienceDirect Journals Complete</source><source>Recercat</source><creator>Amiri, F. ; Millán, D. ; Shen, Y. ; Rabczuk, T. ; Arroyo, M.</creator><creatorcontrib>Amiri, F. ; Millán, D. ; Shen, Y. ; Rabczuk, T. ; Arroyo, M.</creatorcontrib><description>•First phase field model for fracture in thin shells.•The method does not require complex track cracking procedures. The crack's topology is the natural outcome of the analysis.•Efficient meshfree method for complex geometries.
We present a phase-field model for fracture in Kirchoff–Love thin shells using the local maximum-entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not require an explicit representation and tracking, which is advantage over techniques as the extended finite element method that requires tracking of the crack paths. The geometric description of the shell is based on statistical learning techniques that allow dealing with general point set surfaces avoiding a global parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show the flexibility and robustness of the present methodology for two examples: plate in tension and a set of open connected pipes.</description><identifier>ISSN: 0167-8442</identifier><identifier>EISSN: 1872-7638</identifier><identifier>DOI: 10.1016/j.tafmec.2013.12.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>46 Associative rings and algebras ; 46S Other (nonclassical) types of functional analysis ; Anàlisi matemàtica ; Classificació AMS ; Flexibility ; Fracture mechanics ; Functional analysis ; Learning ; Local maximum entropy ; Manifold learning ; Matemàtiques i estadística ; Mathematical analysis ; Meshfree method ; Phase-field model ; Point-set surfaces ; Robustness ; Shells ; Thin shells ; Thin walled shells ; Tracking ; Àrees temàtiques de la UPC</subject><ispartof>Theoretical and applied fracture mechanics, 2014-02, Vol.69, p.102-109</ispartof><rights>2013 Elsevier Ltd</rights><rights>info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-5bd6002428bf26ccc43c7bf7e93a54d13536756541d7142250b87c4f20f610113</citedby><cites>FETCH-LOGICAL-c460t-5bd6002428bf26ccc43c7bf7e93a54d13536756541d7142250b87c4f20f610113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tafmec.2013.12.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,26973,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Amiri, F.</creatorcontrib><creatorcontrib>Millán, D.</creatorcontrib><creatorcontrib>Shen, Y.</creatorcontrib><creatorcontrib>Rabczuk, T.</creatorcontrib><creatorcontrib>Arroyo, M.</creatorcontrib><title>Phase-field modeling of fracture in linear thin shells</title><title>Theoretical and applied fracture mechanics</title><description>•First phase field model for fracture in thin shells.•The method does not require complex track cracking procedures. The crack's topology is the natural outcome of the analysis.•Efficient meshfree method for complex geometries.
We present a phase-field model for fracture in Kirchoff–Love thin shells using the local maximum-entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not require an explicit representation and tracking, which is advantage over techniques as the extended finite element method that requires tracking of the crack paths. The geometric description of the shell is based on statistical learning techniques that allow dealing with general point set surfaces avoiding a global parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show the flexibility and robustness of the present methodology for two examples: plate in tension and a set of open connected pipes.</description><subject>46 Associative rings and algebras</subject><subject>46S Other (nonclassical) types of functional analysis</subject><subject>Anàlisi matemàtica</subject><subject>Classificació AMS</subject><subject>Flexibility</subject><subject>Fracture mechanics</subject><subject>Functional analysis</subject><subject>Learning</subject><subject>Local maximum entropy</subject><subject>Manifold learning</subject><subject>Matemàtiques i estadística</subject><subject>Mathematical analysis</subject><subject>Meshfree method</subject><subject>Phase-field model</subject><subject>Point-set surfaces</subject><subject>Robustness</subject><subject>Shells</subject><subject>Thin shells</subject><subject>Thin walled shells</subject><subject>Tracking</subject><subject>Àrees temàtiques de la UPC</subject><issn>0167-8442</issn><issn>1872-7638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFUU1LxDAQDaLg-vEPPPTopTWTz_YiyOIXLOhBzyGbTtws3XZNuoL_3ixd8KaHITPhveG9eYRcAa2AgrpZV6P1G3QVo8ArYBWl7IjMoNas1IrXx2SWYbqshWCn5CylNaWgoeEzol5XNmHpA3ZtsRla7EL_UQy-8NG6cRexCH2R_9DGYlzlPq2w69IFOfG2S3h5eM_J-8P92_ypXLw8Ps_vFqUTio6lXLYqaxGsXnqmnHOCO730GhtupWiBS660VFJAq0EwJumy1k54Rr3KzoCfE5j2urRzJqLD6OxoBht-h30xqplhUtdKZ871xNnG4XOHaTSbkFxWbXscdsnkS-gGqGzk_1ApGyW54CpDxUFJHFKK6M02ho2N3wao2adg1mZKwexTMMBMdp5ptxMN85W-AkaTXMDeYRuygdG0Q_h7wQ8Yfo8C</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Amiri, F.</creator><creator>Millán, D.</creator><creator>Shen, Y.</creator><creator>Rabczuk, T.</creator><creator>Arroyo, M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>XX2</scope></search><sort><creationdate>201402</creationdate><title>Phase-field modeling of fracture in linear thin shells</title><author>Amiri, F. ; Millán, D. ; Shen, Y. ; Rabczuk, T. ; Arroyo, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-5bd6002428bf26ccc43c7bf7e93a54d13536756541d7142250b87c4f20f610113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>46 Associative rings and algebras</topic><topic>46S Other (nonclassical) types of functional analysis</topic><topic>Anàlisi matemàtica</topic><topic>Classificació AMS</topic><topic>Flexibility</topic><topic>Fracture mechanics</topic><topic>Functional analysis</topic><topic>Learning</topic><topic>Local maximum entropy</topic><topic>Manifold learning</topic><topic>Matemàtiques i estadística</topic><topic>Mathematical analysis</topic><topic>Meshfree method</topic><topic>Phase-field model</topic><topic>Point-set surfaces</topic><topic>Robustness</topic><topic>Shells</topic><topic>Thin shells</topic><topic>Thin walled shells</topic><topic>Tracking</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amiri, F.</creatorcontrib><creatorcontrib>Millán, D.</creatorcontrib><creatorcontrib>Shen, Y.</creatorcontrib><creatorcontrib>Rabczuk, T.</creatorcontrib><creatorcontrib>Arroyo, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Recercat</collection><jtitle>Theoretical and applied fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amiri, F.</au><au>Millán, D.</au><au>Shen, Y.</au><au>Rabczuk, T.</au><au>Arroyo, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-field modeling of fracture in linear thin shells</atitle><jtitle>Theoretical and applied fracture mechanics</jtitle><date>2014-02</date><risdate>2014</risdate><volume>69</volume><spage>102</spage><epage>109</epage><pages>102-109</pages><issn>0167-8442</issn><eissn>1872-7638</eissn><abstract>•First phase field model for fracture in thin shells.•The method does not require complex track cracking procedures. The crack's topology is the natural outcome of the analysis.•Efficient meshfree method for complex geometries.
We present a phase-field model for fracture in Kirchoff–Love thin shells using the local maximum-entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not require an explicit representation and tracking, which is advantage over techniques as the extended finite element method that requires tracking of the crack paths. The geometric description of the shell is based on statistical learning techniques that allow dealing with general point set surfaces avoiding a global parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show the flexibility and robustness of the present methodology for two examples: plate in tension and a set of open connected pipes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.tafmec.2013.12.002</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8442 |
ispartof | Theoretical and applied fracture mechanics, 2014-02, Vol.69, p.102-109 |
issn | 0167-8442 1872-7638 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_257867 |
source | Elsevier ScienceDirect Journals Complete; Recercat |
subjects | 46 Associative rings and algebras 46S Other (nonclassical) types of functional analysis Anàlisi matemàtica Classificació AMS Flexibility Fracture mechanics Functional analysis Learning Local maximum entropy Manifold learning Matemàtiques i estadística Mathematical analysis Meshfree method Phase-field model Point-set surfaces Robustness Shells Thin shells Thin walled shells Tracking Àrees temàtiques de la UPC |
title | Phase-field modeling of fracture in linear thin shells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-field%20modeling%20of%20fracture%20in%20linear%20thin%20shells&rft.jtitle=Theoretical%20and%20applied%20fracture%20mechanics&rft.au=Amiri,%20F.&rft.date=2014-02&rft.volume=69&rft.spage=102&rft.epage=109&rft.pages=102-109&rft.issn=0167-8442&rft.eissn=1872-7638&rft_id=info:doi/10.1016/j.tafmec.2013.12.002&rft_dat=%3Cproquest_csuc_%3E1559653436%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559653436&rft_id=info:pmid/&rft_els_id=S0167844213000815&rfr_iscdi=true |