Phase-field modeling of fracture in linear thin shells

•First phase field model for fracture in thin shells.•The method does not require complex track cracking procedures. The crack's topology is the natural outcome of the analysis.•Efficient meshfree method for complex geometries. We present a phase-field model for fracture in Kirchoff–Love thin s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied fracture mechanics 2014-02, Vol.69, p.102-109
Hauptverfasser: Amiri, F., Millán, D., Shen, Y., Rabczuk, T., Arroyo, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue
container_start_page 102
container_title Theoretical and applied fracture mechanics
container_volume 69
creator Amiri, F.
Millán, D.
Shen, Y.
Rabczuk, T.
Arroyo, M.
description •First phase field model for fracture in thin shells.•The method does not require complex track cracking procedures. The crack's topology is the natural outcome of the analysis.•Efficient meshfree method for complex geometries. We present a phase-field model for fracture in Kirchoff–Love thin shells using the local maximum-entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not require an explicit representation and tracking, which is advantage over techniques as the extended finite element method that requires tracking of the crack paths. The geometric description of the shell is based on statistical learning techniques that allow dealing with general point set surfaces avoiding a global parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show the flexibility and robustness of the present methodology for two examples: plate in tension and a set of open connected pipes.
doi_str_mv 10.1016/j.tafmec.2013.12.002
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_257867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167844213000815</els_id><sourcerecordid>1559653436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-5bd6002428bf26ccc43c7bf7e93a54d13536756541d7142250b87c4f20f610113</originalsourceid><addsrcrecordid>eNqFUU1LxDAQDaLg-vEPPPTopTWTz_YiyOIXLOhBzyGbTtws3XZNuoL_3ixd8KaHITPhveG9eYRcAa2AgrpZV6P1G3QVo8ArYBWl7IjMoNas1IrXx2SWYbqshWCn5CylNaWgoeEzol5XNmHpA3ZtsRla7EL_UQy-8NG6cRexCH2R_9DGYlzlPq2w69IFOfG2S3h5eM_J-8P92_ypXLw8Ps_vFqUTio6lXLYqaxGsXnqmnHOCO730GhtupWiBS660VFJAq0EwJumy1k54Rr3KzoCfE5j2urRzJqLD6OxoBht-h30xqplhUtdKZ871xNnG4XOHaTSbkFxWbXscdsnkS-gGqGzk_1ApGyW54CpDxUFJHFKK6M02ho2N3wao2adg1mZKwexTMMBMdp5ptxMN85W-AkaTXMDeYRuygdG0Q_h7wQ8Yfo8C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559653436</pqid></control><display><type>article</type><title>Phase-field modeling of fracture in linear thin shells</title><source>Elsevier ScienceDirect Journals Complete</source><source>Recercat</source><creator>Amiri, F. ; Millán, D. ; Shen, Y. ; Rabczuk, T. ; Arroyo, M.</creator><creatorcontrib>Amiri, F. ; Millán, D. ; Shen, Y. ; Rabczuk, T. ; Arroyo, M.</creatorcontrib><description>•First phase field model for fracture in thin shells.•The method does not require complex track cracking procedures. The crack's topology is the natural outcome of the analysis.•Efficient meshfree method for complex geometries. We present a phase-field model for fracture in Kirchoff–Love thin shells using the local maximum-entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not require an explicit representation and tracking, which is advantage over techniques as the extended finite element method that requires tracking of the crack paths. The geometric description of the shell is based on statistical learning techniques that allow dealing with general point set surfaces avoiding a global parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show the flexibility and robustness of the present methodology for two examples: plate in tension and a set of open connected pipes.</description><identifier>ISSN: 0167-8442</identifier><identifier>EISSN: 1872-7638</identifier><identifier>DOI: 10.1016/j.tafmec.2013.12.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>46 Associative rings and algebras ; 46S Other (nonclassical) types of functional analysis ; Anàlisi matemàtica ; Classificació AMS ; Flexibility ; Fracture mechanics ; Functional analysis ; Learning ; Local maximum entropy ; Manifold learning ; Matemàtiques i estadística ; Mathematical analysis ; Meshfree method ; Phase-field model ; Point-set surfaces ; Robustness ; Shells ; Thin shells ; Thin walled shells ; Tracking ; Àrees temàtiques de la UPC</subject><ispartof>Theoretical and applied fracture mechanics, 2014-02, Vol.69, p.102-109</ispartof><rights>2013 Elsevier Ltd</rights><rights>info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-5bd6002428bf26ccc43c7bf7e93a54d13536756541d7142250b87c4f20f610113</citedby><cites>FETCH-LOGICAL-c460t-5bd6002428bf26ccc43c7bf7e93a54d13536756541d7142250b87c4f20f610113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tafmec.2013.12.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,26973,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Amiri, F.</creatorcontrib><creatorcontrib>Millán, D.</creatorcontrib><creatorcontrib>Shen, Y.</creatorcontrib><creatorcontrib>Rabczuk, T.</creatorcontrib><creatorcontrib>Arroyo, M.</creatorcontrib><title>Phase-field modeling of fracture in linear thin shells</title><title>Theoretical and applied fracture mechanics</title><description>•First phase field model for fracture in thin shells.•The method does not require complex track cracking procedures. The crack's topology is the natural outcome of the analysis.•Efficient meshfree method for complex geometries. We present a phase-field model for fracture in Kirchoff–Love thin shells using the local maximum-entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not require an explicit representation and tracking, which is advantage over techniques as the extended finite element method that requires tracking of the crack paths. The geometric description of the shell is based on statistical learning techniques that allow dealing with general point set surfaces avoiding a global parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show the flexibility and robustness of the present methodology for two examples: plate in tension and a set of open connected pipes.</description><subject>46 Associative rings and algebras</subject><subject>46S Other (nonclassical) types of functional analysis</subject><subject>Anàlisi matemàtica</subject><subject>Classificació AMS</subject><subject>Flexibility</subject><subject>Fracture mechanics</subject><subject>Functional analysis</subject><subject>Learning</subject><subject>Local maximum entropy</subject><subject>Manifold learning</subject><subject>Matemàtiques i estadística</subject><subject>Mathematical analysis</subject><subject>Meshfree method</subject><subject>Phase-field model</subject><subject>Point-set surfaces</subject><subject>Robustness</subject><subject>Shells</subject><subject>Thin shells</subject><subject>Thin walled shells</subject><subject>Tracking</subject><subject>Àrees temàtiques de la UPC</subject><issn>0167-8442</issn><issn>1872-7638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFUU1LxDAQDaLg-vEPPPTopTWTz_YiyOIXLOhBzyGbTtws3XZNuoL_3ixd8KaHITPhveG9eYRcAa2AgrpZV6P1G3QVo8ArYBWl7IjMoNas1IrXx2SWYbqshWCn5CylNaWgoeEzol5XNmHpA3ZtsRla7EL_UQy-8NG6cRexCH2R_9DGYlzlPq2w69IFOfG2S3h5eM_J-8P92_ypXLw8Ps_vFqUTio6lXLYqaxGsXnqmnHOCO730GhtupWiBS660VFJAq0EwJumy1k54Rr3KzoCfE5j2urRzJqLD6OxoBht-h30xqplhUtdKZ871xNnG4XOHaTSbkFxWbXscdsnkS-gGqGzk_1ApGyW54CpDxUFJHFKK6M02ho2N3wao2adg1mZKwexTMMBMdp5ptxMN85W-AkaTXMDeYRuygdG0Q_h7wQ8Yfo8C</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Amiri, F.</creator><creator>Millán, D.</creator><creator>Shen, Y.</creator><creator>Rabczuk, T.</creator><creator>Arroyo, M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>XX2</scope></search><sort><creationdate>201402</creationdate><title>Phase-field modeling of fracture in linear thin shells</title><author>Amiri, F. ; Millán, D. ; Shen, Y. ; Rabczuk, T. ; Arroyo, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-5bd6002428bf26ccc43c7bf7e93a54d13536756541d7142250b87c4f20f610113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>46 Associative rings and algebras</topic><topic>46S Other (nonclassical) types of functional analysis</topic><topic>Anàlisi matemàtica</topic><topic>Classificació AMS</topic><topic>Flexibility</topic><topic>Fracture mechanics</topic><topic>Functional analysis</topic><topic>Learning</topic><topic>Local maximum entropy</topic><topic>Manifold learning</topic><topic>Matemàtiques i estadística</topic><topic>Mathematical analysis</topic><topic>Meshfree method</topic><topic>Phase-field model</topic><topic>Point-set surfaces</topic><topic>Robustness</topic><topic>Shells</topic><topic>Thin shells</topic><topic>Thin walled shells</topic><topic>Tracking</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amiri, F.</creatorcontrib><creatorcontrib>Millán, D.</creatorcontrib><creatorcontrib>Shen, Y.</creatorcontrib><creatorcontrib>Rabczuk, T.</creatorcontrib><creatorcontrib>Arroyo, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Recercat</collection><jtitle>Theoretical and applied fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amiri, F.</au><au>Millán, D.</au><au>Shen, Y.</au><au>Rabczuk, T.</au><au>Arroyo, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-field modeling of fracture in linear thin shells</atitle><jtitle>Theoretical and applied fracture mechanics</jtitle><date>2014-02</date><risdate>2014</risdate><volume>69</volume><spage>102</spage><epage>109</epage><pages>102-109</pages><issn>0167-8442</issn><eissn>1872-7638</eissn><abstract>•First phase field model for fracture in thin shells.•The method does not require complex track cracking procedures. The crack's topology is the natural outcome of the analysis.•Efficient meshfree method for complex geometries. We present a phase-field model for fracture in Kirchoff–Love thin shells using the local maximum-entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not require an explicit representation and tracking, which is advantage over techniques as the extended finite element method that requires tracking of the crack paths. The geometric description of the shell is based on statistical learning techniques that allow dealing with general point set surfaces avoiding a global parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show the flexibility and robustness of the present methodology for two examples: plate in tension and a set of open connected pipes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.tafmec.2013.12.002</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8442
ispartof Theoretical and applied fracture mechanics, 2014-02, Vol.69, p.102-109
issn 0167-8442
1872-7638
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_257867
source Elsevier ScienceDirect Journals Complete; Recercat
subjects 46 Associative rings and algebras
46S Other (nonclassical) types of functional analysis
Anàlisi matemàtica
Classificació AMS
Flexibility
Fracture mechanics
Functional analysis
Learning
Local maximum entropy
Manifold learning
Matemàtiques i estadística
Mathematical analysis
Meshfree method
Phase-field model
Point-set surfaces
Robustness
Shells
Thin shells
Thin walled shells
Tracking
Àrees temàtiques de la UPC
title Phase-field modeling of fracture in linear thin shells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-field%20modeling%20of%20fracture%20in%20linear%20thin%20shells&rft.jtitle=Theoretical%20and%20applied%20fracture%20mechanics&rft.au=Amiri,%20F.&rft.date=2014-02&rft.volume=69&rft.spage=102&rft.epage=109&rft.pages=102-109&rft.issn=0167-8442&rft.eissn=1872-7638&rft_id=info:doi/10.1016/j.tafmec.2013.12.002&rft_dat=%3Cproquest_csuc_%3E1559653436%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559653436&rft_id=info:pmid/&rft_els_id=S0167844213000815&rfr_iscdi=true