Pure Lovelock Kasner metrics

We study pure Lovelock vacuum and perfect fluid equations for Kasner-type metrics. These equations correspond to a single Nth order Lovelock term in the action in dimensions, and they capture the relevant gravitational dynamics when aproaching the big-bang singularity within the Lovelock family of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Classical and quantum gravity 2015-09, Vol.32 (17), p.175016
Hauptverfasser: Camanho, Xián O, Dadhich, Naresh, Molina, Alfred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 175016
container_title Classical and quantum gravity
container_volume 32
creator Camanho, Xián O
Dadhich, Naresh
Molina, Alfred
description We study pure Lovelock vacuum and perfect fluid equations for Kasner-type metrics. These equations correspond to a single Nth order Lovelock term in the action in dimensions, and they capture the relevant gravitational dynamics when aproaching the big-bang singularity within the Lovelock family of theories. Pure Lovelock gravity also bears out the general feature that vacuum in the critical odd dimension, , is kinematic, i.e. we may define an analogue Lovelock-Riemann tensor that vanishes in vacuum for , yet the Riemann curvature is non-zero. We completely classify isotropic and vacuum Kasner metrics for this class of theories in several isotropy types. The different families can be characterized by means of certain higher order 4th rank tensors. We also analyze in detail the space of vacuum solutions for five- and six dimensional pure Gauss-Bonnet theory. It possesses an interesting and illuminating geometric structure and symmetries that carry over to the general case. We also comment on a closely related family of exponential solutions and on the possibility of solutions with complex Kasner exponents. We show that the latter imply the existence of closed timelike curves in the geometry.
doi_str_mv 10.1088/0264-9381/32/17/175016
format Article
fullrecord <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_257480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_257480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-bf0dd32ba85ad41016368b83ca2924a48ced0c96b8e44da993aacf8f30f85d3a3</originalsourceid><addsrcrecordid>eNqFkN1KxEAMhQdRcF19A5F9gdrJZDpNL2XxDwt6oddDOp1C193tMtMKvr0tXfRSSAiBfDmcI8QNyFuQRKlURicFEqSoUsjHyiSYE7EANJAYJHUqFr9H5-Iixo2UAARqIa7fhuBXZfflt537XL1w3Puw2vk-tC5eirOGt9FfHedSfDzcv6-fkvL18Xl9VyYOifqkamRdo6qYMq41jOJoqCJ0rAqlWZPztXSFqchrXXNRILNrqEHZUFYj41LA_NfFwdngnQ-Oe9tx-7dMrWSurMpyTXJkzJEJXYzBN_YQ2h2HbwvSTrnYybKdLFtUFnI75zKCagbb7mA33RD2o7X_oB-MyWNk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pure Lovelock Kasner metrics</title><source>IOP Publishing Journals</source><source>Recercat</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Camanho, Xián O ; Dadhich, Naresh ; Molina, Alfred</creator><creatorcontrib>Camanho, Xián O ; Dadhich, Naresh ; Molina, Alfred</creatorcontrib><description>We study pure Lovelock vacuum and perfect fluid equations for Kasner-type metrics. These equations correspond to a single Nth order Lovelock term in the action in dimensions, and they capture the relevant gravitational dynamics when aproaching the big-bang singularity within the Lovelock family of theories. Pure Lovelock gravity also bears out the general feature that vacuum in the critical odd dimension, , is kinematic, i.e. we may define an analogue Lovelock-Riemann tensor that vanishes in vacuum for , yet the Riemann curvature is non-zero. We completely classify isotropic and vacuum Kasner metrics for this class of theories in several isotropy types. The different families can be characterized by means of certain higher order 4th rank tensors. We also analyze in detail the space of vacuum solutions for five- and six dimensional pure Gauss-Bonnet theory. It possesses an interesting and illuminating geometric structure and symmetries that carry over to the general case. We also comment on a closely related family of exponential solutions and on the possibility of solutions with complex Kasner exponents. We show that the latter imply the existence of closed timelike curves in the geometry.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/32/17/175016</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Cosmologia ; Cosmology ; Gravetat ; Gravity ; higher-curvature gravity ; Kasner metric ; Lovelock gravity ; Singularitats (Matemàtica) ; singularities ; Singularities (Mathematics)</subject><ispartof>Classical and quantum gravity, 2015-09, Vol.32 (17), p.175016</ispartof><rights>2015 IOP Publishing Ltd</rights><rights>(c) Institute of Physics (IOP), 2015 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-bf0dd32ba85ad41016368b83ca2924a48ced0c96b8e44da993aacf8f30f85d3a3</citedby><cites>FETCH-LOGICAL-c388t-bf0dd32ba85ad41016368b83ca2924a48ced0c96b8e44da993aacf8f30f85d3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0264-9381/32/17/175016/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,26953,27903,27904,53823,53870</link.rule.ids></links><search><creatorcontrib>Camanho, Xián O</creatorcontrib><creatorcontrib>Dadhich, Naresh</creatorcontrib><creatorcontrib>Molina, Alfred</creatorcontrib><title>Pure Lovelock Kasner metrics</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>We study pure Lovelock vacuum and perfect fluid equations for Kasner-type metrics. These equations correspond to a single Nth order Lovelock term in the action in dimensions, and they capture the relevant gravitational dynamics when aproaching the big-bang singularity within the Lovelock family of theories. Pure Lovelock gravity also bears out the general feature that vacuum in the critical odd dimension, , is kinematic, i.e. we may define an analogue Lovelock-Riemann tensor that vanishes in vacuum for , yet the Riemann curvature is non-zero. We completely classify isotropic and vacuum Kasner metrics for this class of theories in several isotropy types. The different families can be characterized by means of certain higher order 4th rank tensors. We also analyze in detail the space of vacuum solutions for five- and six dimensional pure Gauss-Bonnet theory. It possesses an interesting and illuminating geometric structure and symmetries that carry over to the general case. We also comment on a closely related family of exponential solutions and on the possibility of solutions with complex Kasner exponents. We show that the latter imply the existence of closed timelike curves in the geometry.</description><subject>Cosmologia</subject><subject>Cosmology</subject><subject>Gravetat</subject><subject>Gravity</subject><subject>higher-curvature gravity</subject><subject>Kasner metric</subject><subject>Lovelock gravity</subject><subject>Singularitats (Matemàtica)</subject><subject>singularities</subject><subject>Singularities (Mathematics)</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkN1KxEAMhQdRcF19A5F9gdrJZDpNL2XxDwt6oddDOp1C193tMtMKvr0tXfRSSAiBfDmcI8QNyFuQRKlURicFEqSoUsjHyiSYE7EANJAYJHUqFr9H5-Iixo2UAARqIa7fhuBXZfflt537XL1w3Puw2vk-tC5eirOGt9FfHedSfDzcv6-fkvL18Xl9VyYOifqkamRdo6qYMq41jOJoqCJ0rAqlWZPztXSFqchrXXNRILNrqEHZUFYj41LA_NfFwdngnQ-Oe9tx-7dMrWSurMpyTXJkzJEJXYzBN_YQ2h2HbwvSTrnYybKdLFtUFnI75zKCagbb7mA33RD2o7X_oB-MyWNk</recordid><startdate>20150910</startdate><enddate>20150910</enddate><creator>Camanho, Xián O</creator><creator>Dadhich, Naresh</creator><creator>Molina, Alfred</creator><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20150910</creationdate><title>Pure Lovelock Kasner metrics</title><author>Camanho, Xián O ; Dadhich, Naresh ; Molina, Alfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-bf0dd32ba85ad41016368b83ca2924a48ced0c96b8e44da993aacf8f30f85d3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cosmologia</topic><topic>Cosmology</topic><topic>Gravetat</topic><topic>Gravity</topic><topic>higher-curvature gravity</topic><topic>Kasner metric</topic><topic>Lovelock gravity</topic><topic>Singularitats (Matemàtica)</topic><topic>singularities</topic><topic>Singularities (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camanho, Xián O</creatorcontrib><creatorcontrib>Dadhich, Naresh</creatorcontrib><creatorcontrib>Molina, Alfred</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camanho, Xián O</au><au>Dadhich, Naresh</au><au>Molina, Alfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pure Lovelock Kasner metrics</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2015-09-10</date><risdate>2015</risdate><volume>32</volume><issue>17</issue><spage>175016</spage><pages>175016-</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We study pure Lovelock vacuum and perfect fluid equations for Kasner-type metrics. These equations correspond to a single Nth order Lovelock term in the action in dimensions, and they capture the relevant gravitational dynamics when aproaching the big-bang singularity within the Lovelock family of theories. Pure Lovelock gravity also bears out the general feature that vacuum in the critical odd dimension, , is kinematic, i.e. we may define an analogue Lovelock-Riemann tensor that vanishes in vacuum for , yet the Riemann curvature is non-zero. We completely classify isotropic and vacuum Kasner metrics for this class of theories in several isotropy types. The different families can be characterized by means of certain higher order 4th rank tensors. We also analyze in detail the space of vacuum solutions for five- and six dimensional pure Gauss-Bonnet theory. It possesses an interesting and illuminating geometric structure and symmetries that carry over to the general case. We also comment on a closely related family of exponential solutions and on the possibility of solutions with complex Kasner exponents. We show that the latter imply the existence of closed timelike curves in the geometry.</abstract><pub>IOP Publishing</pub><doi>10.1088/0264-9381/32/17/175016</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0264-9381
ispartof Classical and quantum gravity, 2015-09, Vol.32 (17), p.175016
issn 0264-9381
1361-6382
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_257480
source IOP Publishing Journals; Recercat; Institute of Physics (IOP) Journals - HEAL-Link
subjects Cosmologia
Cosmology
Gravetat
Gravity
higher-curvature gravity
Kasner metric
Lovelock gravity
Singularitats (Matemàtica)
singularities
Singularities (Mathematics)
title Pure Lovelock Kasner metrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pure%20Lovelock%20Kasner%20metrics&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Camanho,%20Xi%C3%A1n%20O&rft.date=2015-09-10&rft.volume=32&rft.issue=17&rft.spage=175016&rft.pages=175016-&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/32/17/175016&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_257480%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true