Pure Lovelock Kasner metrics
We study pure Lovelock vacuum and perfect fluid equations for Kasner-type metrics. These equations correspond to a single Nth order Lovelock term in the action in dimensions, and they capture the relevant gravitational dynamics when aproaching the big-bang singularity within the Lovelock family of t...
Gespeichert in:
Veröffentlicht in: | Classical and quantum gravity 2015-09, Vol.32 (17), p.175016 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 175016 |
container_title | Classical and quantum gravity |
container_volume | 32 |
creator | Camanho, Xián O Dadhich, Naresh Molina, Alfred |
description | We study pure Lovelock vacuum and perfect fluid equations for Kasner-type metrics. These equations correspond to a single Nth order Lovelock term in the action in dimensions, and they capture the relevant gravitational dynamics when aproaching the big-bang singularity within the Lovelock family of theories. Pure Lovelock gravity also bears out the general feature that vacuum in the critical odd dimension, , is kinematic, i.e. we may define an analogue Lovelock-Riemann tensor that vanishes in vacuum for , yet the Riemann curvature is non-zero. We completely classify isotropic and vacuum Kasner metrics for this class of theories in several isotropy types. The different families can be characterized by means of certain higher order 4th rank tensors. We also analyze in detail the space of vacuum solutions for five- and six dimensional pure Gauss-Bonnet theory. It possesses an interesting and illuminating geometric structure and symmetries that carry over to the general case. We also comment on a closely related family of exponential solutions and on the possibility of solutions with complex Kasner exponents. We show that the latter imply the existence of closed timelike curves in the geometry. |
doi_str_mv | 10.1088/0264-9381/32/17/175016 |
format | Article |
fullrecord | <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_257480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_257480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-bf0dd32ba85ad41016368b83ca2924a48ced0c96b8e44da993aacf8f30f85d3a3</originalsourceid><addsrcrecordid>eNqFkN1KxEAMhQdRcF19A5F9gdrJZDpNL2XxDwt6oddDOp1C193tMtMKvr0tXfRSSAiBfDmcI8QNyFuQRKlURicFEqSoUsjHyiSYE7EANJAYJHUqFr9H5-Iixo2UAARqIa7fhuBXZfflt537XL1w3Puw2vk-tC5eirOGt9FfHedSfDzcv6-fkvL18Xl9VyYOifqkamRdo6qYMq41jOJoqCJ0rAqlWZPztXSFqchrXXNRILNrqEHZUFYj41LA_NfFwdngnQ-Oe9tx-7dMrWSurMpyTXJkzJEJXYzBN_YQ2h2HbwvSTrnYybKdLFtUFnI75zKCagbb7mA33RD2o7X_oB-MyWNk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pure Lovelock Kasner metrics</title><source>IOP Publishing Journals</source><source>Recercat</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Camanho, Xián O ; Dadhich, Naresh ; Molina, Alfred</creator><creatorcontrib>Camanho, Xián O ; Dadhich, Naresh ; Molina, Alfred</creatorcontrib><description>We study pure Lovelock vacuum and perfect fluid equations for Kasner-type metrics. These equations correspond to a single Nth order Lovelock term in the action in dimensions, and they capture the relevant gravitational dynamics when aproaching the big-bang singularity within the Lovelock family of theories. Pure Lovelock gravity also bears out the general feature that vacuum in the critical odd dimension, , is kinematic, i.e. we may define an analogue Lovelock-Riemann tensor that vanishes in vacuum for , yet the Riemann curvature is non-zero. We completely classify isotropic and vacuum Kasner metrics for this class of theories in several isotropy types. The different families can be characterized by means of certain higher order 4th rank tensors. We also analyze in detail the space of vacuum solutions for five- and six dimensional pure Gauss-Bonnet theory. It possesses an interesting and illuminating geometric structure and symmetries that carry over to the general case. We also comment on a closely related family of exponential solutions and on the possibility of solutions with complex Kasner exponents. We show that the latter imply the existence of closed timelike curves in the geometry.</description><identifier>ISSN: 0264-9381</identifier><identifier>EISSN: 1361-6382</identifier><identifier>DOI: 10.1088/0264-9381/32/17/175016</identifier><identifier>CODEN: CQGRDG</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Cosmologia ; Cosmology ; Gravetat ; Gravity ; higher-curvature gravity ; Kasner metric ; Lovelock gravity ; Singularitats (Matemàtica) ; singularities ; Singularities (Mathematics)</subject><ispartof>Classical and quantum gravity, 2015-09, Vol.32 (17), p.175016</ispartof><rights>2015 IOP Publishing Ltd</rights><rights>(c) Institute of Physics (IOP), 2015 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-bf0dd32ba85ad41016368b83ca2924a48ced0c96b8e44da993aacf8f30f85d3a3</citedby><cites>FETCH-LOGICAL-c388t-bf0dd32ba85ad41016368b83ca2924a48ced0c96b8e44da993aacf8f30f85d3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0264-9381/32/17/175016/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,26953,27903,27904,53823,53870</link.rule.ids></links><search><creatorcontrib>Camanho, Xián O</creatorcontrib><creatorcontrib>Dadhich, Naresh</creatorcontrib><creatorcontrib>Molina, Alfred</creatorcontrib><title>Pure Lovelock Kasner metrics</title><title>Classical and quantum gravity</title><addtitle>CQG</addtitle><addtitle>Class. Quantum Grav</addtitle><description>We study pure Lovelock vacuum and perfect fluid equations for Kasner-type metrics. These equations correspond to a single Nth order Lovelock term in the action in dimensions, and they capture the relevant gravitational dynamics when aproaching the big-bang singularity within the Lovelock family of theories. Pure Lovelock gravity also bears out the general feature that vacuum in the critical odd dimension, , is kinematic, i.e. we may define an analogue Lovelock-Riemann tensor that vanishes in vacuum for , yet the Riemann curvature is non-zero. We completely classify isotropic and vacuum Kasner metrics for this class of theories in several isotropy types. The different families can be characterized by means of certain higher order 4th rank tensors. We also analyze in detail the space of vacuum solutions for five- and six dimensional pure Gauss-Bonnet theory. It possesses an interesting and illuminating geometric structure and symmetries that carry over to the general case. We also comment on a closely related family of exponential solutions and on the possibility of solutions with complex Kasner exponents. We show that the latter imply the existence of closed timelike curves in the geometry.</description><subject>Cosmologia</subject><subject>Cosmology</subject><subject>Gravetat</subject><subject>Gravity</subject><subject>higher-curvature gravity</subject><subject>Kasner metric</subject><subject>Lovelock gravity</subject><subject>Singularitats (Matemàtica)</subject><subject>singularities</subject><subject>Singularities (Mathematics)</subject><issn>0264-9381</issn><issn>1361-6382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkN1KxEAMhQdRcF19A5F9gdrJZDpNL2XxDwt6oddDOp1C193tMtMKvr0tXfRSSAiBfDmcI8QNyFuQRKlURicFEqSoUsjHyiSYE7EANJAYJHUqFr9H5-Iixo2UAARqIa7fhuBXZfflt537XL1w3Puw2vk-tC5eirOGt9FfHedSfDzcv6-fkvL18Xl9VyYOifqkamRdo6qYMq41jOJoqCJ0rAqlWZPztXSFqchrXXNRILNrqEHZUFYj41LA_NfFwdngnQ-Oe9tx-7dMrWSurMpyTXJkzJEJXYzBN_YQ2h2HbwvSTrnYybKdLFtUFnI75zKCagbb7mA33RD2o7X_oB-MyWNk</recordid><startdate>20150910</startdate><enddate>20150910</enddate><creator>Camanho, Xián O</creator><creator>Dadhich, Naresh</creator><creator>Molina, Alfred</creator><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20150910</creationdate><title>Pure Lovelock Kasner metrics</title><author>Camanho, Xián O ; Dadhich, Naresh ; Molina, Alfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-bf0dd32ba85ad41016368b83ca2924a48ced0c96b8e44da993aacf8f30f85d3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cosmologia</topic><topic>Cosmology</topic><topic>Gravetat</topic><topic>Gravity</topic><topic>higher-curvature gravity</topic><topic>Kasner metric</topic><topic>Lovelock gravity</topic><topic>Singularitats (Matemàtica)</topic><topic>singularities</topic><topic>Singularities (Mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camanho, Xián O</creatorcontrib><creatorcontrib>Dadhich, Naresh</creatorcontrib><creatorcontrib>Molina, Alfred</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Classical and quantum gravity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camanho, Xián O</au><au>Dadhich, Naresh</au><au>Molina, Alfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pure Lovelock Kasner metrics</atitle><jtitle>Classical and quantum gravity</jtitle><stitle>CQG</stitle><addtitle>Class. Quantum Grav</addtitle><date>2015-09-10</date><risdate>2015</risdate><volume>32</volume><issue>17</issue><spage>175016</spage><pages>175016-</pages><issn>0264-9381</issn><eissn>1361-6382</eissn><coden>CQGRDG</coden><abstract>We study pure Lovelock vacuum and perfect fluid equations for Kasner-type metrics. These equations correspond to a single Nth order Lovelock term in the action in dimensions, and they capture the relevant gravitational dynamics when aproaching the big-bang singularity within the Lovelock family of theories. Pure Lovelock gravity also bears out the general feature that vacuum in the critical odd dimension, , is kinematic, i.e. we may define an analogue Lovelock-Riemann tensor that vanishes in vacuum for , yet the Riemann curvature is non-zero. We completely classify isotropic and vacuum Kasner metrics for this class of theories in several isotropy types. The different families can be characterized by means of certain higher order 4th rank tensors. We also analyze in detail the space of vacuum solutions for five- and six dimensional pure Gauss-Bonnet theory. It possesses an interesting and illuminating geometric structure and symmetries that carry over to the general case. We also comment on a closely related family of exponential solutions and on the possibility of solutions with complex Kasner exponents. We show that the latter imply the existence of closed timelike curves in the geometry.</abstract><pub>IOP Publishing</pub><doi>10.1088/0264-9381/32/17/175016</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-9381 |
ispartof | Classical and quantum gravity, 2015-09, Vol.32 (17), p.175016 |
issn | 0264-9381 1361-6382 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_257480 |
source | IOP Publishing Journals; Recercat; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Cosmologia Cosmology Gravetat Gravity higher-curvature gravity Kasner metric Lovelock gravity Singularitats (Matemàtica) singularities Singularities (Mathematics) |
title | Pure Lovelock Kasner metrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pure%20Lovelock%20Kasner%20metrics&rft.jtitle=Classical%20and%20quantum%20gravity&rft.au=Camanho,%20Xi%C3%A1n%20O&rft.date=2015-09-10&rft.volume=32&rft.issue=17&rft.spage=175016&rft.pages=175016-&rft.issn=0264-9381&rft.eissn=1361-6382&rft.coden=CQGRDG&rft_id=info:doi/10.1088/0264-9381/32/17/175016&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_257480%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |