Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy
Near infrared spectroscopy (NIRS) has been widely used to determine food chemical composition and to a lesser extent to evaluate sensory properties. Because sample preparation is relatively simple, NIRS is especially useful in situations where many samples must be analysed, such as gene-bank charact...
Gespeichert in:
Veröffentlicht in: | Food research international 2014-02, Vol.56, p.55-62 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | |
container_start_page | 55 |
container_title | Food research international |
container_volume | 56 |
creator | Plans, Marçal Simó, Joan Casañas, Francesc del Castillo, Roser Romero Rodriguez-Saona, Luis E. Sabaté, José |
description | Near infrared spectroscopy (NIRS) has been widely used to determine food chemical composition and to a lesser extent to evaluate sensory properties. Because sample preparation is relatively simple, NIRS is especially useful in situations where many samples must be analysed, such as gene-bank characterization or breeding. We aimed to assess the feasibility of using NIRS to predict aroma, flavour, mealiness, seed-coat perception, seed-coat brightness, and seed-coat roughness in common beans. Spectra of raw, undried cooked and dried cooked common bean seeds of 55 accessions were registered. Partial least squares (PLS) regression equations were developed between spectra absorbance and sensory properties scored by eleven trained panellists. Spectra registered on dried cooked samples generally yielded the best predictions. The relative ability of prediction (RAP) values were greater than 0.8 for flavour and mealiness and between 0.5 and 0.7 for seed-coat roughness and brightness. However, a suitable model to estimate the seed-coat perception was not found. These results make it possible to screen for samples that are close to the target sensory properties and thus substantially reduce the number of panel sessions needed for gene-bank evaluation or breeding.
•Regression between common beans sensory properties and NIR spectra were founded.•Flavour, mealiness, seed-coat roughness and brightness could be roughly estimated.•NIRS can contribute to gene-bank evaluation for sensory properties of large scale studies.•Samples could be discarded and reduce the time of sensory analysis.•Panel sessions required for a selection could be drastically reduced using NIR technology. |
doi_str_mv | 10.1016/j.foodres.2013.12.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_250423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963996913006571</els_id><sourcerecordid>1530995869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-247216d92fa937586810234808f8d8b2f607d00181e004a743d188cea5d40f303</originalsourceid><addsrcrecordid>eNqFUU2L1EAQDaLguPoThL4I6yHZ6o-ku08iy6oLA3rQc9PTqaw9ZNKxK1mYf789zqDHPRRFwXtVr96rqvccGg68u9k3Q0p9RmoEcNlw0QDIF9WGGy1rzVX7stqA7WRtbWdfV2-I9gDQtdpuqnBHSzz4JU4PjHCilI9szmnGvEQklgYW0uGQJrZDPxG7_vHbE6ZxJfa4jg8-R2Lb5iPbHdmEPrM4Ddln7BnNGJacKKT5-LZ6NfiR8N2lX1W_vtz9vP1Wb79_vb_9vK2DUnqphdKCd70Vg7dSt6YzHIRUBsxgerMTQwe6B-CGI4DyWsmeGxPQt72CQYK8qvh5b6A1uIwBc_CLSz7-H04lQAsnWlBCFs71mVOe_rMiLe4QKeA4-gnTSo5r4KCl6szz0FaCtUW3LdD2oqRYQBkHN-ficj46Du6Umdu7S2bulJnjwpXMCu_D5YSn4Mfi5RQi_SMLw3Ur_uI-nXFY7HyMmB2FiFPAPpZPF9en-MylJ3PLrk0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530995869</pqid></control><display><type>article</type><title>Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Plans, Marçal ; Simó, Joan ; Casañas, Francesc ; del Castillo, Roser Romero ; Rodriguez-Saona, Luis E. ; Sabaté, José</creator><creatorcontrib>Plans, Marçal ; Simó, Joan ; Casañas, Francesc ; del Castillo, Roser Romero ; Rodriguez-Saona, Luis E. ; Sabaté, José</creatorcontrib><description>Near infrared spectroscopy (NIRS) has been widely used to determine food chemical composition and to a lesser extent to evaluate sensory properties. Because sample preparation is relatively simple, NIRS is especially useful in situations where many samples must be analysed, such as gene-bank characterization or breeding. We aimed to assess the feasibility of using NIRS to predict aroma, flavour, mealiness, seed-coat perception, seed-coat brightness, and seed-coat roughness in common beans. Spectra of raw, undried cooked and dried cooked common bean seeds of 55 accessions were registered. Partial least squares (PLS) regression equations were developed between spectra absorbance and sensory properties scored by eleven trained panellists. Spectra registered on dried cooked samples generally yielded the best predictions. The relative ability of prediction (RAP) values were greater than 0.8 for flavour and mealiness and between 0.5 and 0.7 for seed-coat roughness and brightness. However, a suitable model to estimate the seed-coat perception was not found. These results make it possible to screen for samples that are close to the target sensory properties and thus substantially reduce the number of panel sessions needed for gene-bank evaluation or breeding.
•Regression between common beans sensory properties and NIR spectra were founded.•Flavour, mealiness, seed-coat roughness and brightness could be roughly estimated.•NIRS can contribute to gene-bank evaluation for sensory properties of large scale studies.•Samples could be discarded and reduce the time of sensory analysis.•Panel sessions required for a selection could be drastically reduced using NIR technology.</description><identifier>ISSN: 0963-9969</identifier><identifier>EISSN: 1873-7145</identifier><identifier>DOI: 10.1016/j.foodres.2013.12.003</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Agricultura ; Anàlisi sensorial ; Beans ; Biological and medical sciences ; Brightness ; Common beans ; Enginyeria agroalimentària ; Food industries ; Fundamental and applied biological sciences. Psychology ; Gene-bank ; Heating ; Infrared spectroscopy ; Mathematical models ; Mongetes ; NIRS ; Partial least square regression ; Perception ; Phaseolus vulgaris ; Producció vegetal ; Roughness ; Sensory analysis ; Spectra ; Àrees temàtiques de la UPC</subject><ispartof>Food research international, 2014-02, Vol.56, p.55-62</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-247216d92fa937586810234808f8d8b2f607d00181e004a743d188cea5d40f303</citedby><cites>FETCH-LOGICAL-c447t-247216d92fa937586810234808f8d8b2f607d00181e004a743d188cea5d40f303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0963996913006571$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28175203$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Plans, Marçal</creatorcontrib><creatorcontrib>Simó, Joan</creatorcontrib><creatorcontrib>Casañas, Francesc</creatorcontrib><creatorcontrib>del Castillo, Roser Romero</creatorcontrib><creatorcontrib>Rodriguez-Saona, Luis E.</creatorcontrib><creatorcontrib>Sabaté, José</creatorcontrib><title>Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy</title><title>Food research international</title><description>Near infrared spectroscopy (NIRS) has been widely used to determine food chemical composition and to a lesser extent to evaluate sensory properties. Because sample preparation is relatively simple, NIRS is especially useful in situations where many samples must be analysed, such as gene-bank characterization or breeding. We aimed to assess the feasibility of using NIRS to predict aroma, flavour, mealiness, seed-coat perception, seed-coat brightness, and seed-coat roughness in common beans. Spectra of raw, undried cooked and dried cooked common bean seeds of 55 accessions were registered. Partial least squares (PLS) regression equations were developed between spectra absorbance and sensory properties scored by eleven trained panellists. Spectra registered on dried cooked samples generally yielded the best predictions. The relative ability of prediction (RAP) values were greater than 0.8 for flavour and mealiness and between 0.5 and 0.7 for seed-coat roughness and brightness. However, a suitable model to estimate the seed-coat perception was not found. These results make it possible to screen for samples that are close to the target sensory properties and thus substantially reduce the number of panel sessions needed for gene-bank evaluation or breeding.
•Regression between common beans sensory properties and NIR spectra were founded.•Flavour, mealiness, seed-coat roughness and brightness could be roughly estimated.•NIRS can contribute to gene-bank evaluation for sensory properties of large scale studies.•Samples could be discarded and reduce the time of sensory analysis.•Panel sessions required for a selection could be drastically reduced using NIR technology.</description><subject>Agricultura</subject><subject>Anàlisi sensorial</subject><subject>Beans</subject><subject>Biological and medical sciences</subject><subject>Brightness</subject><subject>Common beans</subject><subject>Enginyeria agroalimentària</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene-bank</subject><subject>Heating</subject><subject>Infrared spectroscopy</subject><subject>Mathematical models</subject><subject>Mongetes</subject><subject>NIRS</subject><subject>Partial least square regression</subject><subject>Perception</subject><subject>Phaseolus vulgaris</subject><subject>Producció vegetal</subject><subject>Roughness</subject><subject>Sensory analysis</subject><subject>Spectra</subject><subject>Àrees temàtiques de la UPC</subject><issn>0963-9969</issn><issn>1873-7145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFUU2L1EAQDaLguPoThL4I6yHZ6o-ku08iy6oLA3rQc9PTqaw9ZNKxK1mYf789zqDHPRRFwXtVr96rqvccGg68u9k3Q0p9RmoEcNlw0QDIF9WGGy1rzVX7stqA7WRtbWdfV2-I9gDQtdpuqnBHSzz4JU4PjHCilI9szmnGvEQklgYW0uGQJrZDPxG7_vHbE6ZxJfa4jg8-R2Lb5iPbHdmEPrM4Ddln7BnNGJacKKT5-LZ6NfiR8N2lX1W_vtz9vP1Wb79_vb_9vK2DUnqphdKCd70Vg7dSt6YzHIRUBsxgerMTQwe6B-CGI4DyWsmeGxPQt72CQYK8qvh5b6A1uIwBc_CLSz7-H04lQAsnWlBCFs71mVOe_rMiLe4QKeA4-gnTSo5r4KCl6szz0FaCtUW3LdD2oqRYQBkHN-ficj46Du6Umdu7S2bulJnjwpXMCu_D5YSn4Mfi5RQi_SMLw3Ur_uI-nXFY7HyMmB2FiFPAPpZPF9en-MylJ3PLrk0</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Plans, Marçal</creator><creator>Simó, Joan</creator><creator>Casañas, Francesc</creator><creator>del Castillo, Roser Romero</creator><creator>Rodriguez-Saona, Luis E.</creator><creator>Sabaté, José</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope><scope>XX2</scope></search><sort><creationdate>20140201</creationdate><title>Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy</title><author>Plans, Marçal ; Simó, Joan ; Casañas, Francesc ; del Castillo, Roser Romero ; Rodriguez-Saona, Luis E. ; Sabaté, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-247216d92fa937586810234808f8d8b2f607d00181e004a743d188cea5d40f303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agricultura</topic><topic>Anàlisi sensorial</topic><topic>Beans</topic><topic>Biological and medical sciences</topic><topic>Brightness</topic><topic>Common beans</topic><topic>Enginyeria agroalimentària</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene-bank</topic><topic>Heating</topic><topic>Infrared spectroscopy</topic><topic>Mathematical models</topic><topic>Mongetes</topic><topic>NIRS</topic><topic>Partial least square regression</topic><topic>Perception</topic><topic>Phaseolus vulgaris</topic><topic>Producció vegetal</topic><topic>Roughness</topic><topic>Sensory analysis</topic><topic>Spectra</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plans, Marçal</creatorcontrib><creatorcontrib>Simó, Joan</creatorcontrib><creatorcontrib>Casañas, Francesc</creatorcontrib><creatorcontrib>del Castillo, Roser Romero</creatorcontrib><creatorcontrib>Rodriguez-Saona, Luis E.</creatorcontrib><creatorcontrib>Sabaté, José</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Recercat</collection><jtitle>Food research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plans, Marçal</au><au>Simó, Joan</au><au>Casañas, Francesc</au><au>del Castillo, Roser Romero</au><au>Rodriguez-Saona, Luis E.</au><au>Sabaté, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy</atitle><jtitle>Food research international</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>56</volume><spage>55</spage><epage>62</epage><pages>55-62</pages><issn>0963-9969</issn><eissn>1873-7145</eissn><abstract>Near infrared spectroscopy (NIRS) has been widely used to determine food chemical composition and to a lesser extent to evaluate sensory properties. Because sample preparation is relatively simple, NIRS is especially useful in situations where many samples must be analysed, such as gene-bank characterization or breeding. We aimed to assess the feasibility of using NIRS to predict aroma, flavour, mealiness, seed-coat perception, seed-coat brightness, and seed-coat roughness in common beans. Spectra of raw, undried cooked and dried cooked common bean seeds of 55 accessions were registered. Partial least squares (PLS) regression equations were developed between spectra absorbance and sensory properties scored by eleven trained panellists. Spectra registered on dried cooked samples generally yielded the best predictions. The relative ability of prediction (RAP) values were greater than 0.8 for flavour and mealiness and between 0.5 and 0.7 for seed-coat roughness and brightness. However, a suitable model to estimate the seed-coat perception was not found. These results make it possible to screen for samples that are close to the target sensory properties and thus substantially reduce the number of panel sessions needed for gene-bank evaluation or breeding.
•Regression between common beans sensory properties and NIR spectra were founded.•Flavour, mealiness, seed-coat roughness and brightness could be roughly estimated.•NIRS can contribute to gene-bank evaluation for sensory properties of large scale studies.•Samples could be discarded and reduce the time of sensory analysis.•Panel sessions required for a selection could be drastically reduced using NIR technology.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.foodres.2013.12.003</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-9969 |
ispartof | Food research international, 2014-02, Vol.56, p.55-62 |
issn | 0963-9969 1873-7145 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_250423 |
source | Recercat; Elsevier ScienceDirect Journals |
subjects | Agricultura Anàlisi sensorial Beans Biological and medical sciences Brightness Common beans Enginyeria agroalimentària Food industries Fundamental and applied biological sciences. Psychology Gene-bank Heating Infrared spectroscopy Mathematical models Mongetes NIRS Partial least square regression Perception Phaseolus vulgaris Producció vegetal Roughness Sensory analysis Spectra Àrees temàtiques de la UPC |
title | Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20sensory%20properties%20of%20common%20beans%20(Phaseolus%20vulgaris%20L.)%20by%20near%20infrared%20spectroscopy&rft.jtitle=Food%20research%20international&rft.au=Plans,%20Mar%C3%A7al&rft.date=2014-02-01&rft.volume=56&rft.spage=55&rft.epage=62&rft.pages=55-62&rft.issn=0963-9969&rft.eissn=1873-7145&rft_id=info:doi/10.1016/j.foodres.2013.12.003&rft_dat=%3Cproquest_csuc_%3E1530995869%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530995869&rft_id=info:pmid/&rft_els_id=S0963996913006571&rfr_iscdi=true |