A finite element approach to the simulation of hydraulic fractures with lag

Summary We presented a finite‐element‐based algorithm to simulate plane‐strain, straight hydraulic fractures in an impermeable elastic medium. The algorithm accounts for the nonlinear coupling between the fluid pressure and the crack opening and separately tracks the evolution of the crack tip and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2013-06, Vol.37 (9), p.993-1015
Hauptverfasser: Hunsweck, Michael J., Shen, Yongxing, Lew, Adrian J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1015
container_issue 9
container_start_page 993
container_title International journal for numerical and analytical methods in geomechanics
container_volume 37
creator Hunsweck, Michael J.
Shen, Yongxing
Lew, Adrian J.
description Summary We presented a finite‐element‐based algorithm to simulate plane‐strain, straight hydraulic fractures in an impermeable elastic medium. The algorithm accounts for the nonlinear coupling between the fluid pressure and the crack opening and separately tracks the evolution of the crack tip and the fluid front. It therefore allows the existence of a fluid lag. The fluid front is advanced explicitly in time, but an implicit strategy is needed for the crack tip to guarantee the satisfaction of Griffith's criterion at each time step. We enforced the coupling between the fluid and the rock by simultaneously solving for the pressure field in the fluid and the crack opening at each time step. We provided verification of our algorithm by performing sample simulations and comparing them with two known similarity solutions. Copyright © 2012 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nag.1131
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_249974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744717189</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5591-cf4e65e56c08fa701f98a0888963800aa59e3b7ef34aef2a6c7e7b079ef9763</originalsourceid><addsrcrecordid>eNqFkW9rFDEQhxdR8GwFP0JABN9snWyy-fPyOOxVPFpEsdA3YRonvdS93TPJUu_bu8cdLQjiizCEPPOEmV9VveFwxgGaDz3enXEu-LNqxsGq2ppWPK9mIJSoLSj-snqV8z0AtNPrrPo8ZyH2sRCjjjbUF4bbbRrQr1kZWFkTy3Ezdlji0LMhsPXuR8Kxi56FhL6MiTJ7iGXNOrw7rV4E7DK9PtaT6uv5x2-Li3p1tfy0mK9qbFvLax8kqZZa5cEE1MCDNQjGGKuEAUBsLYlbTUFIpNCg8pr0LWhLwWolTip-sPo8epfIU_JY3IDx6bI_DejGNdJaLaee94eeabRfI-XiNjF76jrsaRiz41pKzTU39v-oFFYLBc3e-vYv9H4YUz-N7rhQ7fSxMvpJ6NOQc6LgtiluMO0cB7ePzE2RuX1kE_ruKMTssZs23PuYH_lGS24tmImrD9xD7Gj3T5-7nC-P3iMfc6Hfjzymn05poVt3fbl0-sv3hVzJG3ch_gAEwbFv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365974687</pqid></control><display><type>article</type><title>A finite element approach to the simulation of hydraulic fractures with lag</title><source>Wiley Journals</source><source>Recercat</source><creator>Hunsweck, Michael J. ; Shen, Yongxing ; Lew, Adrian J.</creator><creatorcontrib>Hunsweck, Michael J. ; Shen, Yongxing ; Lew, Adrian J.</creatorcontrib><description>Summary We presented a finite‐element‐based algorithm to simulate plane‐strain, straight hydraulic fractures in an impermeable elastic medium. The algorithm accounts for the nonlinear coupling between the fluid pressure and the crack opening and separately tracks the evolution of the crack tip and the fluid front. It therefore allows the existence of a fluid lag. The fluid front is advanced explicitly in time, but an implicit strategy is needed for the crack tip to guarantee the satisfaction of Griffith's criterion at each time step. We enforced the coupling between the fluid and the rock by simultaneously solving for the pressure field in the fluid and the crack opening at each time step. We provided verification of our algorithm by performing sample simulations and comparing them with two known similarity solutions. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.1131</identifier><identifier>CODEN: IJNGDZ</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>74S Mètodes numèrics ; Algorithms ; Anàlisi numèrica ; Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Computational fluid dynamics ; Computer simulation ; Elasticitat ; Elasticity ; Exact sciences and technology ; finite element ; Fluid flow ; fluid lag ; Fluids ; Fracture mechanics ; hydraulic fracture ; Hydraulic fracturing ; Hydraulics ; Matemàtiques i estadística ; Mathematical analysis ; Mètodes numèrics ; Resistència de materials ; Strength of materials ; Structural analysis. Stresses ; Àrees temàtiques de la UPC</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2013-06, Vol.37 (9), p.993-1015</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5591-cf4e65e56c08fa701f98a0888963800aa59e3b7ef34aef2a6c7e7b079ef9763</citedby><cites>FETCH-LOGICAL-a5591-cf4e65e56c08fa701f98a0888963800aa59e3b7ef34aef2a6c7e7b079ef9763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.1131$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.1131$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,26974,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27419908$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunsweck, Michael J.</creatorcontrib><creatorcontrib>Shen, Yongxing</creatorcontrib><creatorcontrib>Lew, Adrian J.</creatorcontrib><title>A finite element approach to the simulation of hydraulic fractures with lag</title><title>International journal for numerical and analytical methods in geomechanics</title><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><description>Summary We presented a finite‐element‐based algorithm to simulate plane‐strain, straight hydraulic fractures in an impermeable elastic medium. The algorithm accounts for the nonlinear coupling between the fluid pressure and the crack opening and separately tracks the evolution of the crack tip and the fluid front. It therefore allows the existence of a fluid lag. The fluid front is advanced explicitly in time, but an implicit strategy is needed for the crack tip to guarantee the satisfaction of Griffith's criterion at each time step. We enforced the coupling between the fluid and the rock by simultaneously solving for the pressure field in the fluid and the crack opening at each time step. We provided verification of our algorithm by performing sample simulations and comparing them with two known similarity solutions. Copyright © 2012 John Wiley &amp; Sons, Ltd.</description><subject>74S Mètodes numèrics</subject><subject>Algorithms</subject><subject>Anàlisi numèrica</subject><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Elasticitat</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>finite element</subject><subject>Fluid flow</subject><subject>fluid lag</subject><subject>Fluids</subject><subject>Fracture mechanics</subject><subject>hydraulic fracture</subject><subject>Hydraulic fracturing</subject><subject>Hydraulics</subject><subject>Matemàtiques i estadística</subject><subject>Mathematical analysis</subject><subject>Mètodes numèrics</subject><subject>Resistència de materials</subject><subject>Strength of materials</subject><subject>Structural analysis. Stresses</subject><subject>Àrees temàtiques de la UPC</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkW9rFDEQhxdR8GwFP0JABN9snWyy-fPyOOxVPFpEsdA3YRonvdS93TPJUu_bu8cdLQjiizCEPPOEmV9VveFwxgGaDz3enXEu-LNqxsGq2ppWPK9mIJSoLSj-snqV8z0AtNPrrPo8ZyH2sRCjjjbUF4bbbRrQr1kZWFkTy3Ezdlji0LMhsPXuR8Kxi56FhL6MiTJ7iGXNOrw7rV4E7DK9PtaT6uv5x2-Li3p1tfy0mK9qbFvLax8kqZZa5cEE1MCDNQjGGKuEAUBsLYlbTUFIpNCg8pr0LWhLwWolTip-sPo8epfIU_JY3IDx6bI_DejGNdJaLaee94eeabRfI-XiNjF76jrsaRiz41pKzTU39v-oFFYLBc3e-vYv9H4YUz-N7rhQ7fSxMvpJ6NOQc6LgtiluMO0cB7ePzE2RuX1kE_ruKMTssZs23PuYH_lGS24tmImrD9xD7Gj3T5-7nC-P3iMfc6Hfjzymn05poVt3fbl0-sv3hVzJG3ch_gAEwbFv</recordid><startdate>20130625</startdate><enddate>20130625</enddate><creator>Hunsweck, Michael J.</creator><creator>Shen, Yongxing</creator><creator>Lew, Adrian J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope></search><sort><creationdate>20130625</creationdate><title>A finite element approach to the simulation of hydraulic fractures with lag</title><author>Hunsweck, Michael J. ; Shen, Yongxing ; Lew, Adrian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5591-cf4e65e56c08fa701f98a0888963800aa59e3b7ef34aef2a6c7e7b079ef9763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>74S Mètodes numèrics</topic><topic>Algorithms</topic><topic>Anàlisi numèrica</topic><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Elasticitat</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>finite element</topic><topic>Fluid flow</topic><topic>fluid lag</topic><topic>Fluids</topic><topic>Fracture mechanics</topic><topic>hydraulic fracture</topic><topic>Hydraulic fracturing</topic><topic>Hydraulics</topic><topic>Matemàtiques i estadística</topic><topic>Mathematical analysis</topic><topic>Mètodes numèrics</topic><topic>Resistència de materials</topic><topic>Strength of materials</topic><topic>Structural analysis. Stresses</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunsweck, Michael J.</creatorcontrib><creatorcontrib>Shen, Yongxing</creatorcontrib><creatorcontrib>Lew, Adrian J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunsweck, Michael J.</au><au>Shen, Yongxing</au><au>Lew, Adrian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite element approach to the simulation of hydraulic fractures with lag</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><date>2013-06-25</date><risdate>2013</risdate><volume>37</volume><issue>9</issue><spage>993</spage><epage>1015</epage><pages>993-1015</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><coden>IJNGDZ</coden><abstract>Summary We presented a finite‐element‐based algorithm to simulate plane‐strain, straight hydraulic fractures in an impermeable elastic medium. The algorithm accounts for the nonlinear coupling between the fluid pressure and the crack opening and separately tracks the evolution of the crack tip and the fluid front. It therefore allows the existence of a fluid lag. The fluid front is advanced explicitly in time, but an implicit strategy is needed for the crack tip to guarantee the satisfaction of Griffith's criterion at each time step. We enforced the coupling between the fluid and the rock by simultaneously solving for the pressure field in the fluid and the crack opening at each time step. We provided verification of our algorithm by performing sample simulations and comparing them with two known similarity solutions. Copyright © 2012 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nag.1131</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-9061
ispartof International journal for numerical and analytical methods in geomechanics, 2013-06, Vol.37 (9), p.993-1015
issn 0363-9061
1096-9853
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_249974
source Wiley Journals; Recercat
subjects 74S Mètodes numèrics
Algorithms
Anàlisi numèrica
Applied sciences
Buildings. Public works
Computation methods. Tables. Charts
Computational fluid dynamics
Computer simulation
Elasticitat
Elasticity
Exact sciences and technology
finite element
Fluid flow
fluid lag
Fluids
Fracture mechanics
hydraulic fracture
Hydraulic fracturing
Hydraulics
Matemàtiques i estadística
Mathematical analysis
Mètodes numèrics
Resistència de materials
Strength of materials
Structural analysis. Stresses
Àrees temàtiques de la UPC
title A finite element approach to the simulation of hydraulic fractures with lag
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20element%20approach%20to%20the%20simulation%20of%20hydraulic%20fractures%20with%20lag&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Hunsweck,%20Michael%20J.&rft.date=2013-06-25&rft.volume=37&rft.issue=9&rft.spage=993&rft.epage=1015&rft.pages=993-1015&rft.issn=0363-9061&rft.eissn=1096-9853&rft.coden=IJNGDZ&rft_id=info:doi/10.1002/nag.1131&rft_dat=%3Cproquest_csuc_%3E1744717189%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365974687&rft_id=info:pmid/&rfr_iscdi=true