Development and experimental validation of a dynamic thermal and water distribution model of an open cathode proton exchange membrane fuel cell

Water concentration in proton exchange membrane (PEM) fuel cells strongly influences performance and durability which demands for fundamental understanding of water transport mechanisms. The system efficiency can be significantly improved with greater understanding of water flux dynamics through the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2011-05, Vol.196 (9), p.4251-4263
Hauptverfasser: Strahl, Stephan, Husar, Attila, Serra, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4263
container_issue 9
container_start_page 4251
container_title Journal of power sources
container_volume 196
creator Strahl, Stephan
Husar, Attila
Serra, Maria
description Water concentration in proton exchange membrane (PEM) fuel cells strongly influences performance and durability which demands for fundamental understanding of water transport mechanisms. The system efficiency can be significantly improved with greater understanding of water flux dynamics through the membrane and its dependence on the internal conditions of the fuel cell. Therefore, a two-dimensional, non-isothermal, dynamic model of a 100 W open cathode, self-humidified PEM fuel cell system has been developed, that is capable of representing system specific control mechanisms for water and thermal management. The model consists of three coupled submodels based on energy, momentum and water mass balance of the system. The work is based on experimental observations of the investigated fuel cell stack, for which the crucial coefficients for water transport, namely the diffusion and the electroosmotic drag (EOD) coefficient have been determined. The diffusivity of water vapor through the MEA at 30 °C was determined to be 3.3 × 10 −8 m 2 s −1 and increases by 3 × 10 −10 m 2 s −1 °C −1 up to 50 °C stack temperature. The EOD coefficient was measured as 0.47–0.48 water molecules per proton at stack currents from 1 to 3 A. Validation of the steady state and the dynamic model by using experimental data, directly obtained from laboratory tests, has shown that the model predictions match the experimental data well.
doi_str_mv 10.1016/j.jpowsour.2010.10.074
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_249014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775310018744</els_id><sourcerecordid>864436597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-a9446c438d025f21dd8d8a57e3657b2fda8ec6727d5f3a031f323cd7690236393</originalsourceid><addsrcrecordid>eNqFkcuO0zAUhiMEEmXgFZA3CDYpvsbODjRcpZHYwNpy7WPqKomD7XRmnoJXxmkL7GBhWT7n_3wuf9M8J3hLMOleH7aHOd7muKQtxafgFkv-oNkQJVlLpRAPmw1mUrVSCva4eZLzAWNMiMSb5uc7OMIQ5xGmgszkENzNkML6NAM6miE4U0KcUPTIIHc_mTFYVPaQxppfgVtTICEXcklht5y0Y3QwnIjKzTAha8q-xtCcYql5uLN7M30HNMK4S2YC5JcKWBiGp80jb4YMzy73VfPtw_uv15_amy8fP1-_vWkt72VpTc95ZzlTDlPhKXFOOWWEBNYJuaPeGQW2k1Q64ZnBjHhGmXWy6zFlHevZVUPO_9q8WJ3AQqpN6mjC38d6KJZUU95jwivz8szUMX4skIseQ16brhPEJWvVcV7r97IqX_1TSaSURHS8F1XaXRpJMecEXs91_Sbda4L16q8-6N_-6tXfNV79reCLSw2TrRl83aMN-Q9NWa-EUrjq3px1UNd5DJB0tgEmCy7USYt2Mfyv1C_ETsGE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777156495</pqid></control><display><type>article</type><title>Development and experimental validation of a dynamic thermal and water distribution model of an open cathode proton exchange membrane fuel cell</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Strahl, Stephan ; Husar, Attila ; Serra, Maria</creator><creatorcontrib>Strahl, Stephan ; Husar, Attila ; Serra, Maria</creatorcontrib><description>Water concentration in proton exchange membrane (PEM) fuel cells strongly influences performance and durability which demands for fundamental understanding of water transport mechanisms. The system efficiency can be significantly improved with greater understanding of water flux dynamics through the membrane and its dependence on the internal conditions of the fuel cell. Therefore, a two-dimensional, non-isothermal, dynamic model of a 100 W open cathode, self-humidified PEM fuel cell system has been developed, that is capable of representing system specific control mechanisms for water and thermal management. The model consists of three coupled submodels based on energy, momentum and water mass balance of the system. The work is based on experimental observations of the investigated fuel cell stack, for which the crucial coefficients for water transport, namely the diffusion and the electroosmotic drag (EOD) coefficient have been determined. The diffusivity of water vapor through the MEA at 30 °C was determined to be 3.3 × 10 −8 m 2 s −1 and increases by 3 × 10 −10 m 2 s −1 °C −1 up to 50 °C stack temperature. The EOD coefficient was measured as 0.47–0.48 water molecules per proton at stack currents from 1 to 3 A. Validation of the steady state and the dynamic model by using experimental data, directly obtained from laboratory tests, has shown that the model predictions match the experimental data well.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2010.10.074</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; automation ; Automàtica i control ; Cathodes ; Classificació INSPEC ; Direct energy conversion and energy accumulation ; Dynamic models ; Dynamical systems ; Dynamics ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electroosmotic drag ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Informàtica ; Mathematical models ; Membranes ; Proton exchange membrane fuel cells ; Stacks ; Thermal management ; Water diffusion ; Water transport ; Àrees temàtiques de la UPC</subject><ispartof>Journal of power sources, 2011-05, Vol.196 (9), p.4251-4263</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-a9446c438d025f21dd8d8a57e3657b2fda8ec6727d5f3a031f323cd7690236393</citedby><cites>FETCH-LOGICAL-c497t-a9446c438d025f21dd8d8a57e3657b2fda8ec6727d5f3a031f323cd7690236393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775310018744$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,26951,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23985880$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Strahl, Stephan</creatorcontrib><creatorcontrib>Husar, Attila</creatorcontrib><creatorcontrib>Serra, Maria</creatorcontrib><title>Development and experimental validation of a dynamic thermal and water distribution model of an open cathode proton exchange membrane fuel cell</title><title>Journal of power sources</title><description>Water concentration in proton exchange membrane (PEM) fuel cells strongly influences performance and durability which demands for fundamental understanding of water transport mechanisms. The system efficiency can be significantly improved with greater understanding of water flux dynamics through the membrane and its dependence on the internal conditions of the fuel cell. Therefore, a two-dimensional, non-isothermal, dynamic model of a 100 W open cathode, self-humidified PEM fuel cell system has been developed, that is capable of representing system specific control mechanisms for water and thermal management. The model consists of three coupled submodels based on energy, momentum and water mass balance of the system. The work is based on experimental observations of the investigated fuel cell stack, for which the crucial coefficients for water transport, namely the diffusion and the electroosmotic drag (EOD) coefficient have been determined. The diffusivity of water vapor through the MEA at 30 °C was determined to be 3.3 × 10 −8 m 2 s −1 and increases by 3 × 10 −10 m 2 s −1 °C −1 up to 50 °C stack temperature. The EOD coefficient was measured as 0.47–0.48 water molecules per proton at stack currents from 1 to 3 A. Validation of the steady state and the dynamic model by using experimental data, directly obtained from laboratory tests, has shown that the model predictions match the experimental data well.</description><subject>Applied sciences</subject><subject>automation</subject><subject>Automàtica i control</subject><subject>Cathodes</subject><subject>Classificació INSPEC</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electroosmotic drag</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Informàtica</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Proton exchange membrane fuel cells</subject><subject>Stacks</subject><subject>Thermal management</subject><subject>Water diffusion</subject><subject>Water transport</subject><subject>Àrees temàtiques de la UPC</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkcuO0zAUhiMEEmXgFZA3CDYpvsbODjRcpZHYwNpy7WPqKomD7XRmnoJXxmkL7GBhWT7n_3wuf9M8J3hLMOleH7aHOd7muKQtxafgFkv-oNkQJVlLpRAPmw1mUrVSCva4eZLzAWNMiMSb5uc7OMIQ5xGmgszkENzNkML6NAM6miE4U0KcUPTIIHc_mTFYVPaQxppfgVtTICEXcklht5y0Y3QwnIjKzTAha8q-xtCcYql5uLN7M30HNMK4S2YC5JcKWBiGp80jb4YMzy73VfPtw_uv15_amy8fP1-_vWkt72VpTc95ZzlTDlPhKXFOOWWEBNYJuaPeGQW2k1Q64ZnBjHhGmXWy6zFlHevZVUPO_9q8WJ3AQqpN6mjC38d6KJZUU95jwivz8szUMX4skIseQ16brhPEJWvVcV7r97IqX_1TSaSURHS8F1XaXRpJMecEXs91_Sbda4L16q8-6N_-6tXfNV79reCLSw2TrRl83aMN-Q9NWa-EUrjq3px1UNd5DJB0tgEmCy7USYt2Mfyv1C_ETsGE</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Strahl, Stephan</creator><creator>Husar, Attila</creator><creator>Serra, Maria</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>SOI</scope><scope>XX2</scope></search><sort><creationdate>20110501</creationdate><title>Development and experimental validation of a dynamic thermal and water distribution model of an open cathode proton exchange membrane fuel cell</title><author>Strahl, Stephan ; Husar, Attila ; Serra, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-a9446c438d025f21dd8d8a57e3657b2fda8ec6727d5f3a031f323cd7690236393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>automation</topic><topic>Automàtica i control</topic><topic>Cathodes</topic><topic>Classificació INSPEC</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electroosmotic drag</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Informàtica</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Proton exchange membrane fuel cells</topic><topic>Stacks</topic><topic>Thermal management</topic><topic>Water diffusion</topic><topic>Water transport</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strahl, Stephan</creatorcontrib><creatorcontrib>Husar, Attila</creatorcontrib><creatorcontrib>Serra, Maria</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Recercat</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strahl, Stephan</au><au>Husar, Attila</au><au>Serra, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and experimental validation of a dynamic thermal and water distribution model of an open cathode proton exchange membrane fuel cell</atitle><jtitle>Journal of power sources</jtitle><date>2011-05-01</date><risdate>2011</risdate><volume>196</volume><issue>9</issue><spage>4251</spage><epage>4263</epage><pages>4251-4263</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Water concentration in proton exchange membrane (PEM) fuel cells strongly influences performance and durability which demands for fundamental understanding of water transport mechanisms. The system efficiency can be significantly improved with greater understanding of water flux dynamics through the membrane and its dependence on the internal conditions of the fuel cell. Therefore, a two-dimensional, non-isothermal, dynamic model of a 100 W open cathode, self-humidified PEM fuel cell system has been developed, that is capable of representing system specific control mechanisms for water and thermal management. The model consists of three coupled submodels based on energy, momentum and water mass balance of the system. The work is based on experimental observations of the investigated fuel cell stack, for which the crucial coefficients for water transport, namely the diffusion and the electroosmotic drag (EOD) coefficient have been determined. The diffusivity of water vapor through the MEA at 30 °C was determined to be 3.3 × 10 −8 m 2 s −1 and increases by 3 × 10 −10 m 2 s −1 °C −1 up to 50 °C stack temperature. The EOD coefficient was measured as 0.47–0.48 water molecules per proton at stack currents from 1 to 3 A. Validation of the steady state and the dynamic model by using experimental data, directly obtained from laboratory tests, has shown that the model predictions match the experimental data well.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2010.10.074</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2011-05, Vol.196 (9), p.4251-4263
issn 0378-7753
1873-2755
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_249014
source Recercat; Elsevier ScienceDirect Journals
subjects Applied sciences
automation
Automàtica i control
Cathodes
Classificació INSPEC
Direct energy conversion and energy accumulation
Dynamic models
Dynamical systems
Dynamics
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electroosmotic drag
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Informàtica
Mathematical models
Membranes
Proton exchange membrane fuel cells
Stacks
Thermal management
Water diffusion
Water transport
Àrees temàtiques de la UPC
title Development and experimental validation of a dynamic thermal and water distribution model of an open cathode proton exchange membrane fuel cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20experimental%20validation%20of%20a%20dynamic%20thermal%20and%20water%20distribution%20model%20of%20an%20open%20cathode%20proton%20exchange%20membrane%20fuel%20cell&rft.jtitle=Journal%20of%20power%20sources&rft.au=Strahl,%20Stephan&rft.date=2011-05-01&rft.volume=196&rft.issue=9&rft.spage=4251&rft.epage=4263&rft.pages=4251-4263&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2010.10.074&rft_dat=%3Cproquest_csuc_%3E864436597%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777156495&rft_id=info:pmid/&rft_els_id=S0378775310018744&rfr_iscdi=true