Optimal control of energy hub systems by use of SQP algorithm and energy prediction

This paper presents an energy optimization methodology applied on industrial plants with multiple energy carriers. The methodology combines an adaptive neuro-fuzzy inference system to calculate the short-term load forecasting of a plant, and the sequential quadratic programming algorithm to optimize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kampouropoulos, Konstantinos, Andrade, Fabio, Sala, Enric, Romeral, Luis
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue
container_start_page 221
container_title
container_volume
creator Kampouropoulos, Konstantinos
Andrade, Fabio
Sala, Enric
Romeral, Luis
description This paper presents an energy optimization methodology applied on industrial plants with multiple energy carriers. The methodology combines an adaptive neuro-fuzzy inference system to calculate the short-term load forecasting of a plant, and the sequential quadratic programming algorithm to optimize its energy flow. Furthermore, the mathematical models of the plant's equipment are considered into the optimization process, in order to calculate the dynamic system response and the equipment's inertias. The final algorithm optimizes the operation of the plant in order to satisfy the energy demand, minimizing several optimization criteria. The methodology has been tested and evaluated in an automotive factory plant using real production and consumption data.
doi_str_mv 10.1109/IECON.2014.7048503
format Conference Proceeding
fullrecord <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_248625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7048503</ieee_id><sourcerecordid>oai_recercat_cat_2072_248625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-948dd5417842a1b45e1aaf3fac63baa1c5bc269790f6c170ad9ec72d277173313</originalsourceid><addsrcrecordid>eNpFkN1Kw0AQhVdUsK2-gN7sC6Tu7E82eymlaqFYpQq9C5PNpo2kSdndXuTtbWmlF8NwOOcMfEPII7AxADPPs-lk8THmDORYM5kpJq7IEKQ2RjLB4foixOqGDEApkSjNV3dkGMIvY0pmKQzIcrGL9RYbars2-q6hXUVd6_y6p5t9QUMfotsGWvR0H9zRXH59UmzWna_jZkuxLf_jO-_K2sa6a-_JbYVNcA_nPSI_r9PvyXsyX7zNJi_zxPJMx8TIrCyVBJ1JjlBI5QCxEhXaVBSIYFVheWq0YVVqQTMsjbOal1xr0EKAGBE43bVhb3PvrPMWY95hfRHH4UzznB94uTp0nk6d2jmX7_yB3ff5-YPiD3fTYzw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal control of energy hub systems by use of SQP algorithm and energy prediction</title><source>Recercat</source><creator>Kampouropoulos, Konstantinos ; Andrade, Fabio ; Sala, Enric ; Romeral, Luis</creator><creatorcontrib>Kampouropoulos, Konstantinos ; Andrade, Fabio ; Sala, Enric ; Romeral, Luis</creatorcontrib><description>This paper presents an energy optimization methodology applied on industrial plants with multiple energy carriers. The methodology combines an adaptive neuro-fuzzy inference system to calculate the short-term load forecasting of a plant, and the sequential quadratic programming algorithm to optimize its energy flow. Furthermore, the mathematical models of the plant's equipment are considered into the optimization process, in order to calculate the dynamic system response and the equipment's inertias. The final algorithm optimizes the operation of the plant in order to satisfy the energy demand, minimizing several optimization criteria. The methodology has been tested and evaluated in an automotive factory plant using real production and consumption data.</description><identifier>ISSN: 1553-572X</identifier><identifier>ISBN: 147994033X</identifier><identifier>ISBN: 9781479940332</identifier><identifier>EISBN: 1479940321</identifier><identifier>EISBN: 9781479940325</identifier><identifier>DOI: 10.1109/IECON.2014.7048503</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive neuro-fuzzy inference system ; Cooling ; Electric engineering ; Energies ; energy hub ; energy optimization ; energy prediction ; Enginyeria electrònica ; Enginyeria elèctrica ; Heating ; Heuristic algorithms ; Inference algorithms ; Mathematical model ; Optimization ; Production ; sequential quadratic programming algorithm ; Àrees temàtiques de la UPC</subject><ispartof>IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, p.221-227</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,780,885,26974</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/248625$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kampouropoulos, Konstantinos</creatorcontrib><creatorcontrib>Andrade, Fabio</creatorcontrib><creatorcontrib>Sala, Enric</creatorcontrib><creatorcontrib>Romeral, Luis</creatorcontrib><title>Optimal control of energy hub systems by use of SQP algorithm and energy prediction</title><title>IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society</title><addtitle>IECON</addtitle><description>This paper presents an energy optimization methodology applied on industrial plants with multiple energy carriers. The methodology combines an adaptive neuro-fuzzy inference system to calculate the short-term load forecasting of a plant, and the sequential quadratic programming algorithm to optimize its energy flow. Furthermore, the mathematical models of the plant's equipment are considered into the optimization process, in order to calculate the dynamic system response and the equipment's inertias. The final algorithm optimizes the operation of the plant in order to satisfy the energy demand, minimizing several optimization criteria. The methodology has been tested and evaluated in an automotive factory plant using real production and consumption data.</description><subject>adaptive neuro-fuzzy inference system</subject><subject>Cooling</subject><subject>Electric engineering</subject><subject>Energies</subject><subject>energy hub</subject><subject>energy optimization</subject><subject>energy prediction</subject><subject>Enginyeria electrònica</subject><subject>Enginyeria elèctrica</subject><subject>Heating</subject><subject>Heuristic algorithms</subject><subject>Inference algorithms</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Production</subject><subject>sequential quadratic programming algorithm</subject><subject>Àrees temàtiques de la UPC</subject><issn>1553-572X</issn><isbn>147994033X</isbn><isbn>9781479940332</isbn><isbn>1479940321</isbn><isbn>9781479940325</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>XX2</sourceid><recordid>eNpFkN1Kw0AQhVdUsK2-gN7sC6Tu7E82eymlaqFYpQq9C5PNpo2kSdndXuTtbWmlF8NwOOcMfEPII7AxADPPs-lk8THmDORYM5kpJq7IEKQ2RjLB4foixOqGDEApkSjNV3dkGMIvY0pmKQzIcrGL9RYbars2-q6hXUVd6_y6p5t9QUMfotsGWvR0H9zRXH59UmzWna_jZkuxLf_jO-_K2sa6a-_JbYVNcA_nPSI_r9PvyXsyX7zNJi_zxPJMx8TIrCyVBJ1JjlBI5QCxEhXaVBSIYFVheWq0YVVqQTMsjbOal1xr0EKAGBE43bVhb3PvrPMWY95hfRHH4UzznB94uTp0nk6d2jmX7_yB3ff5-YPiD3fTYzw</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Kampouropoulos, Konstantinos</creator><creator>Andrade, Fabio</creator><creator>Sala, Enric</creator><creator>Romeral, Luis</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>XX2</scope></search><sort><creationdate>201410</creationdate><title>Optimal control of energy hub systems by use of SQP algorithm and energy prediction</title><author>Kampouropoulos, Konstantinos ; Andrade, Fabio ; Sala, Enric ; Romeral, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-948dd5417842a1b45e1aaf3fac63baa1c5bc269790f6c170ad9ec72d277173313</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><topic>adaptive neuro-fuzzy inference system</topic><topic>Cooling</topic><topic>Electric engineering</topic><topic>Energies</topic><topic>energy hub</topic><topic>energy optimization</topic><topic>energy prediction</topic><topic>Enginyeria electrònica</topic><topic>Enginyeria elèctrica</topic><topic>Heating</topic><topic>Heuristic algorithms</topic><topic>Inference algorithms</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Production</topic><topic>sequential quadratic programming algorithm</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>online_resources</toplevel><creatorcontrib>Kampouropoulos, Konstantinos</creatorcontrib><creatorcontrib>Andrade, Fabio</creatorcontrib><creatorcontrib>Sala, Enric</creatorcontrib><creatorcontrib>Romeral, Luis</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kampouropoulos, Konstantinos</au><au>Andrade, Fabio</au><au>Sala, Enric</au><au>Romeral, Luis</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal control of energy hub systems by use of SQP algorithm and energy prediction</atitle><btitle>IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society</btitle><stitle>IECON</stitle><date>2014-10</date><risdate>2014</risdate><spage>221</spage><epage>227</epage><pages>221-227</pages><issn>1553-572X</issn><isbn>147994033X</isbn><isbn>9781479940332</isbn><eisbn>1479940321</eisbn><eisbn>9781479940325</eisbn><abstract>This paper presents an energy optimization methodology applied on industrial plants with multiple energy carriers. The methodology combines an adaptive neuro-fuzzy inference system to calculate the short-term load forecasting of a plant, and the sequential quadratic programming algorithm to optimize its energy flow. Furthermore, the mathematical models of the plant's equipment are considered into the optimization process, in order to calculate the dynamic system response and the equipment's inertias. The final algorithm optimizes the operation of the plant in order to satisfy the energy demand, minimizing several optimization criteria. The methodology has been tested and evaluated in an automotive factory plant using real production and consumption data.</abstract><pub>IEEE</pub><doi>10.1109/IECON.2014.7048503</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1553-572X
ispartof IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society, 2014, p.221-227
issn 1553-572X
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_248625
source Recercat
subjects adaptive neuro-fuzzy inference system
Cooling
Electric engineering
Energies
energy hub
energy optimization
energy prediction
Enginyeria electrònica
Enginyeria elèctrica
Heating
Heuristic algorithms
Inference algorithms
Mathematical model
Optimization
Production
sequential quadratic programming algorithm
Àrees temàtiques de la UPC
title Optimal control of energy hub systems by use of SQP algorithm and energy prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20control%20of%20energy%20hub%20systems%20by%20use%20of%20SQP%20algorithm%20and%20energy%20prediction&rft.btitle=IECON%202014%20-%2040th%20Annual%20Conference%20of%20the%20IEEE%20Industrial%20Electronics%20Society&rft.au=Kampouropoulos,%20Konstantinos&rft.date=2014-10&rft.spage=221&rft.epage=227&rft.pages=221-227&rft.issn=1553-572X&rft.isbn=147994033X&rft.isbn_list=9781479940332&rft_id=info:doi/10.1109/IECON.2014.7048503&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_248625%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&rft.eisbn=1479940321&rft.eisbn_list=9781479940325&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7048503&rfr_iscdi=true