Identification for passive robust fault detection using zonotope-based set-membership approaches
In this paper, the problem of identification for passive robust fault detection, when a bounded description of the modelling uncertainty is considered, is addressed. Two set‐membership identification methods are introduced to address this problem: the interval predictor and bounded error approaches....
Gespeichert in:
Veröffentlicht in: | International journal of adaptive control and signal processing 2011-09, Vol.25 (9), p.788-812 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the problem of identification for passive robust fault detection, when a bounded description of the modelling uncertainty is considered, is addressed. Two set‐membership identification methods are introduced to address this problem: the interval predictor and bounded error approaches. These two identification approaches naturally lead to two robust fault detection tests: the direct and inverse tests, respectively, which are also introduced and discussed. Implementation algorithms make use of a zonotope to approximate the parameter uncertainty set. Moreover, underlying hypothesis of both approaches is discussed and applicability conditions are stated. A case study based on a four‐tank system is used to illustrate the applicability and the properties of the two identification approaches as well as the corresponding fault detection. Copyright © 2011 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0890-6327 1099-1115 1099-1115 |
DOI: | 10.1002/acs.1242 |