On the connectivity of the Julia sets of meromorphic functions
We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we sh...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2014-12, Vol.198 (3), p.591-636 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 636 |
---|---|
container_issue | 3 |
container_start_page | 591 |
container_title | Inventiones mathematicae |
container_volume | 198 |
creator | Barański, Krzysztof Fagella, Núria Jarque, Xavier Karpińska, Bogusława |
description | We prove that every transcendental meromorphic map
f
with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question. |
doi_str_mv | 10.1007/s00222-014-0504-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_246776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642303607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-8c9a88286ad76b5d8147f8d6e38a4d7eb8209d8ee980dc8fa38a52987d9f30bb3</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMoOD5-gLuCGzfVmzTNYyPI4JOB2eg6pGnqdGiTMWmF-femjuAguLiEe_Kdy00OQhcYrjEAv4kAhJAcMM2hBJqXB2iGaUFyTCQ_RLN0DbmUGI7RSYxrSGDByQzdLl02rGxmvHPWDO1nO2wz33xrL2PX6izaIU5Kb4PvfdisWpM1o0usd_EMHTW6i_b85zxFbw_3r_OnfLF8fJ7fLXJDGR5yYaQWggima86qshaY8kbUzBZC05rbShCQtbBWCqiNaHTSSyIFr2VTQFUVpwjv5po4GhWsscHoQXnd_jZTEeBEEco4Z8lztfNsgv8YbRxU30Zju04768eoMKOkgIIBT-jlH3Ttx-DSixJFSoFLRmFvieBjDLZRm9D2OmwVBjWloHYpqPS5akpBlclDdp6YWPduw97kf01fHWCIZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625815640</pqid></control><display><type>article</type><title>On the connectivity of the Julia sets of meromorphic functions</title><source>SpringerNature Complete Journals</source><source>Recercat</source><creator>Barański, Krzysztof ; Fagella, Núria ; Jarque, Xavier ; Karpińska, Bogusława</creator><creatorcontrib>Barański, Krzysztof ; Fagella, Núria ; Jarque, Xavier ; Karpińska, Bogusława</creatorcontrib><description>We prove that every transcendental meromorphic map
f
with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-014-0504-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption ; Boundaries ; Discs ; Disks ; Entire functions ; Funcions de variables complexes ; Funcions enteres ; Functions of complex variables ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Meromorphic functions ; Newton methods ; Texts</subject><ispartof>Inventiones mathematicae, 2014-12, Vol.198 (3), p.591-636</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>(c) Springer Verlag, 2014 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-8c9a88286ad76b5d8147f8d6e38a4d7eb8209d8ee980dc8fa38a52987d9f30bb3</citedby><cites>FETCH-LOGICAL-c461t-8c9a88286ad76b5d8147f8d6e38a4d7eb8209d8ee980dc8fa38a52987d9f30bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00222-014-0504-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00222-014-0504-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,26974,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Barański, Krzysztof</creatorcontrib><creatorcontrib>Fagella, Núria</creatorcontrib><creatorcontrib>Jarque, Xavier</creatorcontrib><creatorcontrib>Karpińska, Bogusława</creatorcontrib><title>On the connectivity of the Julia sets of meromorphic functions</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>We prove that every transcendental meromorphic map
f
with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question.</description><subject>Absorption</subject><subject>Boundaries</subject><subject>Discs</subject><subject>Disks</subject><subject>Entire functions</subject><subject>Funcions de variables complexes</subject><subject>Funcions enteres</subject><subject>Functions of complex variables</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Meromorphic functions</subject><subject>Newton methods</subject><subject>Texts</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>XX2</sourceid><recordid>eNp1kUtLxDAUhYMoOD5-gLuCGzfVmzTNYyPI4JOB2eg6pGnqdGiTMWmF-femjuAguLiEe_Kdy00OQhcYrjEAv4kAhJAcMM2hBJqXB2iGaUFyTCQ_RLN0DbmUGI7RSYxrSGDByQzdLl02rGxmvHPWDO1nO2wz33xrL2PX6izaIU5Kb4PvfdisWpM1o0usd_EMHTW6i_b85zxFbw_3r_OnfLF8fJ7fLXJDGR5yYaQWggima86qshaY8kbUzBZC05rbShCQtbBWCqiNaHTSSyIFr2VTQFUVpwjv5po4GhWsscHoQXnd_jZTEeBEEco4Z8lztfNsgv8YbRxU30Zju04768eoMKOkgIIBT-jlH3Ttx-DSixJFSoFLRmFvieBjDLZRm9D2OmwVBjWloHYpqPS5akpBlclDdp6YWPduw97kf01fHWCIZg</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Barański, Krzysztof</creator><creator>Fagella, Núria</creator><creator>Jarque, Xavier</creator><creator>Karpińska, Bogusława</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>XX2</scope></search><sort><creationdate>20141201</creationdate><title>On the connectivity of the Julia sets of meromorphic functions</title><author>Barański, Krzysztof ; Fagella, Núria ; Jarque, Xavier ; Karpińska, Bogusława</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-8c9a88286ad76b5d8147f8d6e38a4d7eb8209d8ee980dc8fa38a52987d9f30bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Absorption</topic><topic>Boundaries</topic><topic>Discs</topic><topic>Disks</topic><topic>Entire functions</topic><topic>Funcions de variables complexes</topic><topic>Funcions enteres</topic><topic>Functions of complex variables</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Meromorphic functions</topic><topic>Newton methods</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barański, Krzysztof</creatorcontrib><creatorcontrib>Fagella, Núria</creatorcontrib><creatorcontrib>Jarque, Xavier</creatorcontrib><creatorcontrib>Karpińska, Bogusława</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Recercat</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barański, Krzysztof</au><au>Fagella, Núria</au><au>Jarque, Xavier</au><au>Karpińska, Bogusława</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the connectivity of the Julia sets of meromorphic functions</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>198</volume><issue>3</issue><spage>591</spage><epage>636</epage><pages>591-636</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We prove that every transcendental meromorphic map
f
with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00222-014-0504-5</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2014-12, Vol.198 (3), p.591-636 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_246776 |
source | SpringerNature Complete Journals; Recercat |
subjects | Absorption Boundaries Discs Disks Entire functions Funcions de variables complexes Funcions enteres Functions of complex variables Mathematical analysis Mathematics Mathematics and Statistics Meromorphic functions Newton methods Texts |
title | On the connectivity of the Julia sets of meromorphic functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20connectivity%20of%20the%20Julia%20sets%20of%20meromorphic%20functions&rft.jtitle=Inventiones%20mathematicae&rft.au=Bara%C5%84ski,%20Krzysztof&rft.date=2014-12-01&rft.volume=198&rft.issue=3&rft.spage=591&rft.epage=636&rft.pages=591-636&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-014-0504-5&rft_dat=%3Cproquest_csuc_%3E1642303607%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625815640&rft_id=info:pmid/&rfr_iscdi=true |