On the connectivity of the Julia sets of meromorphic functions

We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2014-12, Vol.198 (3), p.591-636
Hauptverfasser: Barański, Krzysztof, Fagella, Núria, Jarque, Xavier, Karpińska, Bogusława
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 636
container_issue 3
container_start_page 591
container_title Inventiones mathematicae
container_volume 198
creator Barański, Krzysztof
Fagella, Núria
Jarque, Xavier
Karpińska, Bogusława
description We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question.
doi_str_mv 10.1007/s00222-014-0504-5
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_246776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642303607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-8c9a88286ad76b5d8147f8d6e38a4d7eb8209d8ee980dc8fa38a52987d9f30bb3</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMoOD5-gLuCGzfVmzTNYyPI4JOB2eg6pGnqdGiTMWmF-femjuAguLiEe_Kdy00OQhcYrjEAv4kAhJAcMM2hBJqXB2iGaUFyTCQ_RLN0DbmUGI7RSYxrSGDByQzdLl02rGxmvHPWDO1nO2wz33xrL2PX6izaIU5Kb4PvfdisWpM1o0usd_EMHTW6i_b85zxFbw_3r_OnfLF8fJ7fLXJDGR5yYaQWggima86qshaY8kbUzBZC05rbShCQtbBWCqiNaHTSSyIFr2VTQFUVpwjv5po4GhWsscHoQXnd_jZTEeBEEco4Z8lztfNsgv8YbRxU30Zju04768eoMKOkgIIBT-jlH3Ttx-DSixJFSoFLRmFvieBjDLZRm9D2OmwVBjWloHYpqPS5akpBlclDdp6YWPduw97kf01fHWCIZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625815640</pqid></control><display><type>article</type><title>On the connectivity of the Julia sets of meromorphic functions</title><source>SpringerNature Complete Journals</source><source>Recercat</source><creator>Barański, Krzysztof ; Fagella, Núria ; Jarque, Xavier ; Karpińska, Bogusława</creator><creatorcontrib>Barański, Krzysztof ; Fagella, Núria ; Jarque, Xavier ; Karpińska, Bogusława</creatorcontrib><description>We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-014-0504-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption ; Boundaries ; Discs ; Disks ; Entire functions ; Funcions de variables complexes ; Funcions enteres ; Functions of complex variables ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Meromorphic functions ; Newton methods ; Texts</subject><ispartof>Inventiones mathematicae, 2014-12, Vol.198 (3), p.591-636</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>(c) Springer Verlag, 2014 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-8c9a88286ad76b5d8147f8d6e38a4d7eb8209d8ee980dc8fa38a52987d9f30bb3</citedby><cites>FETCH-LOGICAL-c461t-8c9a88286ad76b5d8147f8d6e38a4d7eb8209d8ee980dc8fa38a52987d9f30bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00222-014-0504-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00222-014-0504-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,26974,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Barański, Krzysztof</creatorcontrib><creatorcontrib>Fagella, Núria</creatorcontrib><creatorcontrib>Jarque, Xavier</creatorcontrib><creatorcontrib>Karpińska, Bogusława</creatorcontrib><title>On the connectivity of the Julia sets of meromorphic functions</title><title>Inventiones mathematicae</title><addtitle>Invent. math</addtitle><description>We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question.</description><subject>Absorption</subject><subject>Boundaries</subject><subject>Discs</subject><subject>Disks</subject><subject>Entire functions</subject><subject>Funcions de variables complexes</subject><subject>Funcions enteres</subject><subject>Functions of complex variables</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Meromorphic functions</subject><subject>Newton methods</subject><subject>Texts</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>XX2</sourceid><recordid>eNp1kUtLxDAUhYMoOD5-gLuCGzfVmzTNYyPI4JOB2eg6pGnqdGiTMWmF-femjuAguLiEe_Kdy00OQhcYrjEAv4kAhJAcMM2hBJqXB2iGaUFyTCQ_RLN0DbmUGI7RSYxrSGDByQzdLl02rGxmvHPWDO1nO2wz33xrL2PX6izaIU5Kb4PvfdisWpM1o0usd_EMHTW6i_b85zxFbw_3r_OnfLF8fJ7fLXJDGR5yYaQWggima86qshaY8kbUzBZC05rbShCQtbBWCqiNaHTSSyIFr2VTQFUVpwjv5po4GhWsscHoQXnd_jZTEeBEEco4Z8lztfNsgv8YbRxU30Zju04768eoMKOkgIIBT-jlH3Ttx-DSixJFSoFLRmFvieBjDLZRm9D2OmwVBjWloHYpqPS5akpBlclDdp6YWPduw97kf01fHWCIZg</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Barański, Krzysztof</creator><creator>Fagella, Núria</creator><creator>Jarque, Xavier</creator><creator>Karpińska, Bogusława</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>XX2</scope></search><sort><creationdate>20141201</creationdate><title>On the connectivity of the Julia sets of meromorphic functions</title><author>Barański, Krzysztof ; Fagella, Núria ; Jarque, Xavier ; Karpińska, Bogusława</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-8c9a88286ad76b5d8147f8d6e38a4d7eb8209d8ee980dc8fa38a52987d9f30bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Absorption</topic><topic>Boundaries</topic><topic>Discs</topic><topic>Disks</topic><topic>Entire functions</topic><topic>Funcions de variables complexes</topic><topic>Funcions enteres</topic><topic>Functions of complex variables</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Meromorphic functions</topic><topic>Newton methods</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barański, Krzysztof</creatorcontrib><creatorcontrib>Fagella, Núria</creatorcontrib><creatorcontrib>Jarque, Xavier</creatorcontrib><creatorcontrib>Karpińska, Bogusława</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Recercat</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barański, Krzysztof</au><au>Fagella, Núria</au><au>Jarque, Xavier</au><au>Karpińska, Bogusława</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the connectivity of the Julia sets of meromorphic functions</atitle><jtitle>Inventiones mathematicae</jtitle><stitle>Invent. math</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>198</volume><issue>3</issue><spage>591</spage><epage>636</epage><pages>591-636</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>We prove that every transcendental meromorphic map f with disconnected Julia set has a weakly repelling fixed point. This implies that the Julia set of Newton’s method for finding zeroes of an entire map is connected. Moreover, extending a result of Cowen for holomorphic self-maps of the disc, we show the existence of absorbing domains for holomorphic self-maps of hyperbolic regions, whose iterates tend to a boundary point. In particular, the results imply that periodic Baker domains of Newton’s method for entire maps are simply connected, which solves a well-known open question.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00222-014-0504-5</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-9910
ispartof Inventiones mathematicae, 2014-12, Vol.198 (3), p.591-636
issn 0020-9910
1432-1297
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_246776
source SpringerNature Complete Journals; Recercat
subjects Absorption
Boundaries
Discs
Disks
Entire functions
Funcions de variables complexes
Funcions enteres
Functions of complex variables
Mathematical analysis
Mathematics
Mathematics and Statistics
Meromorphic functions
Newton methods
Texts
title On the connectivity of the Julia sets of meromorphic functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20connectivity%20of%20the%20Julia%20sets%20of%20meromorphic%20functions&rft.jtitle=Inventiones%20mathematicae&rft.au=Bara%C5%84ski,%20Krzysztof&rft.date=2014-12-01&rft.volume=198&rft.issue=3&rft.spage=591&rft.epage=636&rft.pages=591-636&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-014-0504-5&rft_dat=%3Cproquest_csuc_%3E1642303607%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625815640&rft_id=info:pmid/&rfr_iscdi=true