Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem

In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Celestial mechanics and dynamical astronomy 2014-11, Vol.120 (3), p.309-336
Hauptverfasser: Mingotti, G., Sánchez, J. P., McInnes, C. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 3
container_start_page 309
container_title Celestial mechanics and dynamical astronomy
container_volume 120
creator Mingotti, G.
Sánchez, J. P.
McInnes, C. R.
description In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid system to a selected periodic orbit of the Sun–Earth restricted three-body system: the orbit can be either a libration point periodic orbit (LPO) or a distant prograde periodic orbit (DPO) around the Earth. In detail, low-thrust propulsion is used to bring the joint spacecraft-asteroid system from the initial condition to a point belonging to the stable manifold associated to the final periodic orbit: from here onward, thanks to the intrinsic dynamics of the physical model adopted, the flight is purely ballistic. Dedicated guided and capture sets are introduced to exploit the combined use of low-thrust propulsion with stable manifolds trajectories, aiming at defining feasible first guess solutions. Then, an optimal control problem is formulated to refine and improve them. This approach enables a new class of missions, whose solutions are not obtainable neither through the patched-conics method nor through the classic invariant manifolds technique.
doi_str_mv 10.1007/s10569-014-9589-9
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_243510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642250172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-5fdfbf532764256ec63315c226fd2d40f4d84d22121b8e6d14fa0ac128904bd53</originalsourceid><addsrcrecordid>eNqNkc2KFDEUhQtRsB19AHcBN27iJLeSVGUpTTsKw8xCXYdUfuw0VUmbpJTZ-QDufEOfxDQtOAiCixBCvnPPuZyue07JK0rIcFko4UJiQhmWfJRYPug2lA-AJRvGh92GSOgxtK_H3ZNSDoQQTiTfdN-3aZlCdBbN6Suu-7yWio45Hde5hBSRjhaF-EXnoGNFi47Bp9mimvXBmZpycAXVhIw-1jU7dLO7LY1Hde_Q-zX-_PZjp3PdIxOyWWedUXal5mBqM2xmzuEp2buT4TS75Wn3yOu5uGe_74vu45vdh-1bfH179W77-hobLkjF3Fs_ed7DIBhw4Yzoe8oNgPAWLCOe2ZFZAAp0Gp2wlHlNtKEwSsImy_uLjp7nmrIalZ1x2eiqkg5_HqcDZAAFrOeUNM3Ls6Zl_by2LdQSinHzrKNLa1G0ZQFO6AD_gcIgx4H1fUNf_IUe0ppjW75RlAoCQtB7eXMqJTuvjjksOt8pStSpfnWuX7X61al-JZsGzprS2PjJ5XuT_yn6BalqtMk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611602661</pqid></control><display><type>article</type><title>Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem</title><source>Recercat</source><source>SpringerLink Journals</source><creator>Mingotti, G. ; Sánchez, J. P. ; McInnes, C. R.</creator><creatorcontrib>Mingotti, G. ; Sánchez, J. P. ; McInnes, C. R.</creatorcontrib><description>In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid system to a selected periodic orbit of the Sun–Earth restricted three-body system: the orbit can be either a libration point periodic orbit (LPO) or a distant prograde periodic orbit (DPO) around the Earth. In detail, low-thrust propulsion is used to bring the joint spacecraft-asteroid system from the initial condition to a point belonging to the stable manifold associated to the final periodic orbit: from here onward, thanks to the intrinsic dynamics of the physical model adopted, the flight is purely ballistic. Dedicated guided and capture sets are introduced to exploit the combined use of low-thrust propulsion with stable manifolds trajectories, aiming at defining feasible first guess solutions. Then, an optimal control problem is formulated to refine and improve them. This approach enables a new class of missions, whose solutions are not obtainable neither through the patched-conics method nor through the classic invariant manifolds technique.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-014-9589-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Asteroid retrieval candidates ; ASTEROIDS ; Astrophysics ; Astrophysics and Astroparticles ; Classical Mechanics ; Distant prograde periodic orbit (DPO) ; Dynamical systems ; Dynamical Systems and Ergodic Theory ; DYNAMICS ; Earth ; Easily retrievable objects (EROs) ; EQUILIBRIUM POINTS ; Geophysics/Geodesy ; Invariant manifolds ; Invariants ; Libration point periodic orbit (LPO) ; Low-thrust propulsion ; Manifolds ; Matemàtiques i estadística ; Mecànica orbital ; MISSION DESIGN ; MOON TRAJECTORIES ; Near-Earth object capture ; Near-earth objects ; OBJECTS ; Optimal control problem ; OPTIMIZATION ; Orbital mechanics ; Orbits ; Original Article ; PERIODIC-ORBITS ; Physics ; Physics and Astronomy ; Problema dels tres cossos ; Propulsion ; Space exploration ; Spacecraft ; Special dedicated sets ; Three-body problem ; Trajectories ; TRANSFERS ; TRANSIT ORBITS ; Àrees temàtiques de la UPC</subject><ispartof>Celestial mechanics and dynamical astronomy, 2014-11, Vol.120 (3), p.309-336</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-5fdfbf532764256ec63315c226fd2d40f4d84d22121b8e6d14fa0ac128904bd53</citedby><cites>FETCH-LOGICAL-c560t-5fdfbf532764256ec63315c226fd2d40f4d84d22121b8e6d14fa0ac128904bd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10569-014-9589-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10569-014-9589-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,26951,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mingotti, G.</creatorcontrib><creatorcontrib>Sánchez, J. P.</creatorcontrib><creatorcontrib>McInnes, C. R.</creatorcontrib><title>Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid system to a selected periodic orbit of the Sun–Earth restricted three-body system: the orbit can be either a libration point periodic orbit (LPO) or a distant prograde periodic orbit (DPO) around the Earth. In detail, low-thrust propulsion is used to bring the joint spacecraft-asteroid system from the initial condition to a point belonging to the stable manifold associated to the final periodic orbit: from here onward, thanks to the intrinsic dynamics of the physical model adopted, the flight is purely ballistic. Dedicated guided and capture sets are introduced to exploit the combined use of low-thrust propulsion with stable manifolds trajectories, aiming at defining feasible first guess solutions. Then, an optimal control problem is formulated to refine and improve them. This approach enables a new class of missions, whose solutions are not obtainable neither through the patched-conics method nor through the classic invariant manifolds technique.</description><subject>Aerospace Technology and Astronautics</subject><subject>Asteroid retrieval candidates</subject><subject>ASTEROIDS</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Classical Mechanics</subject><subject>Distant prograde periodic orbit (DPO)</subject><subject>Dynamical systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>DYNAMICS</subject><subject>Earth</subject><subject>Easily retrievable objects (EROs)</subject><subject>EQUILIBRIUM POINTS</subject><subject>Geophysics/Geodesy</subject><subject>Invariant manifolds</subject><subject>Invariants</subject><subject>Libration point periodic orbit (LPO)</subject><subject>Low-thrust propulsion</subject><subject>Manifolds</subject><subject>Matemàtiques i estadística</subject><subject>Mecànica orbital</subject><subject>MISSION DESIGN</subject><subject>MOON TRAJECTORIES</subject><subject>Near-Earth object capture</subject><subject>Near-earth objects</subject><subject>OBJECTS</subject><subject>Optimal control problem</subject><subject>OPTIMIZATION</subject><subject>Orbital mechanics</subject><subject>Orbits</subject><subject>Original Article</subject><subject>PERIODIC-ORBITS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Problema dels tres cossos</subject><subject>Propulsion</subject><subject>Space exploration</subject><subject>Spacecraft</subject><subject>Special dedicated sets</subject><subject>Three-body problem</subject><subject>Trajectories</subject><subject>TRANSFERS</subject><subject>TRANSIT ORBITS</subject><subject>Àrees temàtiques de la UPC</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>XX2</sourceid><recordid>eNqNkc2KFDEUhQtRsB19AHcBN27iJLeSVGUpTTsKw8xCXYdUfuw0VUmbpJTZ-QDufEOfxDQtOAiCixBCvnPPuZyue07JK0rIcFko4UJiQhmWfJRYPug2lA-AJRvGh92GSOgxtK_H3ZNSDoQQTiTfdN-3aZlCdBbN6Suu-7yWio45Hde5hBSRjhaF-EXnoGNFi47Bp9mimvXBmZpycAXVhIw-1jU7dLO7LY1Hde_Q-zX-_PZjp3PdIxOyWWedUXal5mBqM2xmzuEp2buT4TS75Wn3yOu5uGe_74vu45vdh-1bfH179W77-hobLkjF3Fs_ed7DIBhw4Yzoe8oNgPAWLCOe2ZFZAAp0Gp2wlHlNtKEwSsImy_uLjp7nmrIalZ1x2eiqkg5_HqcDZAAFrOeUNM3Ls6Zl_by2LdQSinHzrKNLa1G0ZQFO6AD_gcIgx4H1fUNf_IUe0ppjW75RlAoCQtB7eXMqJTuvjjksOt8pStSpfnWuX7X61al-JZsGzprS2PjJ5XuT_yn6BalqtMk</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Mingotti, G.</creator><creator>Sánchez, J. P.</creator><creator>McInnes, C. R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TB</scope><scope>FR3</scope><scope>XX2</scope></search><sort><creationdate>20141101</creationdate><title>Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem</title><author>Mingotti, G. ; Sánchez, J. P. ; McInnes, C. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-5fdfbf532764256ec63315c226fd2d40f4d84d22121b8e6d14fa0ac128904bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Asteroid retrieval candidates</topic><topic>ASTEROIDS</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Classical Mechanics</topic><topic>Distant prograde periodic orbit (DPO)</topic><topic>Dynamical systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>DYNAMICS</topic><topic>Earth</topic><topic>Easily retrievable objects (EROs)</topic><topic>EQUILIBRIUM POINTS</topic><topic>Geophysics/Geodesy</topic><topic>Invariant manifolds</topic><topic>Invariants</topic><topic>Libration point periodic orbit (LPO)</topic><topic>Low-thrust propulsion</topic><topic>Manifolds</topic><topic>Matemàtiques i estadística</topic><topic>Mecànica orbital</topic><topic>MISSION DESIGN</topic><topic>MOON TRAJECTORIES</topic><topic>Near-Earth object capture</topic><topic>Near-earth objects</topic><topic>OBJECTS</topic><topic>Optimal control problem</topic><topic>OPTIMIZATION</topic><topic>Orbital mechanics</topic><topic>Orbits</topic><topic>Original Article</topic><topic>PERIODIC-ORBITS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Problema dels tres cossos</topic><topic>Propulsion</topic><topic>Space exploration</topic><topic>Spacecraft</topic><topic>Special dedicated sets</topic><topic>Three-body problem</topic><topic>Trajectories</topic><topic>TRANSFERS</topic><topic>TRANSIT ORBITS</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mingotti, G.</creatorcontrib><creatorcontrib>Sánchez, J. P.</creatorcontrib><creatorcontrib>McInnes, C. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Recercat</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mingotti, G.</au><au>Sánchez, J. P.</au><au>McInnes, C. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>120</volume><issue>3</issue><spage>309</spage><epage>336</epage><pages>309-336</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid system to a selected periodic orbit of the Sun–Earth restricted three-body system: the orbit can be either a libration point periodic orbit (LPO) or a distant prograde periodic orbit (DPO) around the Earth. In detail, low-thrust propulsion is used to bring the joint spacecraft-asteroid system from the initial condition to a point belonging to the stable manifold associated to the final periodic orbit: from here onward, thanks to the intrinsic dynamics of the physical model adopted, the flight is purely ballistic. Dedicated guided and capture sets are introduced to exploit the combined use of low-thrust propulsion with stable manifolds trajectories, aiming at defining feasible first guess solutions. Then, an optimal control problem is formulated to refine and improve them. This approach enables a new class of missions, whose solutions are not obtainable neither through the patched-conics method nor through the classic invariant manifolds technique.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-014-9589-9</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0923-2958
ispartof Celestial mechanics and dynamical astronomy, 2014-11, Vol.120 (3), p.309-336
issn 0923-2958
1572-9478
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_243510
source Recercat; SpringerLink Journals
subjects Aerospace Technology and Astronautics
Asteroid retrieval candidates
ASTEROIDS
Astrophysics
Astrophysics and Astroparticles
Classical Mechanics
Distant prograde periodic orbit (DPO)
Dynamical systems
Dynamical Systems and Ergodic Theory
DYNAMICS
Earth
Easily retrievable objects (EROs)
EQUILIBRIUM POINTS
Geophysics/Geodesy
Invariant manifolds
Invariants
Libration point periodic orbit (LPO)
Low-thrust propulsion
Manifolds
Matemàtiques i estadística
Mecànica orbital
MISSION DESIGN
MOON TRAJECTORIES
Near-Earth object capture
Near-earth objects
OBJECTS
Optimal control problem
OPTIMIZATION
Orbital mechanics
Orbits
Original Article
PERIODIC-ORBITS
Physics
Physics and Astronomy
Problema dels tres cossos
Propulsion
Space exploration
Spacecraft
Special dedicated sets
Three-body problem
Trajectories
TRANSFERS
TRANSIT ORBITS
Àrees temàtiques de la UPC
title Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20low-thrust%20propulsion%20and%20invariant%20manifold%20trajectories%20to%20capture%20NEOs%20in%20the%20Sun%E2%80%93Earth%20circular%20restricted%20three-body%20problem&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Mingotti,%20G.&rft.date=2014-11-01&rft.volume=120&rft.issue=3&rft.spage=309&rft.epage=336&rft.pages=309-336&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-014-9589-9&rft_dat=%3Cproquest_csuc_%3E1642250172%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1611602661&rft_id=info:pmid/&rfr_iscdi=true