Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem
In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid syst...
Gespeichert in:
Veröffentlicht in: | Celestial mechanics and dynamical astronomy 2014-11, Vol.120 (3), p.309-336 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 336 |
---|---|
container_issue | 3 |
container_start_page | 309 |
container_title | Celestial mechanics and dynamical astronomy |
container_volume | 120 |
creator | Mingotti, G. Sánchez, J. P. McInnes, C. R. |
description | In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid system to a selected periodic orbit of the Sun–Earth restricted three-body system: the orbit can be either a libration point periodic orbit (LPO) or a distant prograde periodic orbit (DPO) around the Earth. In detail, low-thrust propulsion is used to bring the joint spacecraft-asteroid system from the initial condition to a point belonging to the stable manifold associated to the final periodic orbit: from here onward, thanks to the intrinsic dynamics of the physical model adopted, the flight is purely ballistic. Dedicated guided and capture sets are introduced to exploit the combined use of low-thrust propulsion with stable manifolds trajectories, aiming at defining feasible first guess solutions. Then, an optimal control problem is formulated to refine and improve them. This approach enables a new class of missions, whose solutions are not obtainable neither through the patched-conics method nor through the classic invariant manifolds technique. |
doi_str_mv | 10.1007/s10569-014-9589-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_243510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642250172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-5fdfbf532764256ec63315c226fd2d40f4d84d22121b8e6d14fa0ac128904bd53</originalsourceid><addsrcrecordid>eNqNkc2KFDEUhQtRsB19AHcBN27iJLeSVGUpTTsKw8xCXYdUfuw0VUmbpJTZ-QDufEOfxDQtOAiCixBCvnPPuZyue07JK0rIcFko4UJiQhmWfJRYPug2lA-AJRvGh92GSOgxtK_H3ZNSDoQQTiTfdN-3aZlCdBbN6Suu-7yWio45Hde5hBSRjhaF-EXnoGNFi47Bp9mimvXBmZpycAXVhIw-1jU7dLO7LY1Hde_Q-zX-_PZjp3PdIxOyWWedUXal5mBqM2xmzuEp2buT4TS75Wn3yOu5uGe_74vu45vdh-1bfH179W77-hobLkjF3Fs_ed7DIBhw4Yzoe8oNgPAWLCOe2ZFZAAp0Gp2wlHlNtKEwSsImy_uLjp7nmrIalZ1x2eiqkg5_HqcDZAAFrOeUNM3Ls6Zl_by2LdQSinHzrKNLa1G0ZQFO6AD_gcIgx4H1fUNf_IUe0ppjW75RlAoCQtB7eXMqJTuvjjksOt8pStSpfnWuX7X61al-JZsGzprS2PjJ5XuT_yn6BalqtMk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611602661</pqid></control><display><type>article</type><title>Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem</title><source>Recercat</source><source>SpringerLink Journals</source><creator>Mingotti, G. ; Sánchez, J. P. ; McInnes, C. R.</creator><creatorcontrib>Mingotti, G. ; Sánchez, J. P. ; McInnes, C. R.</creatorcontrib><description>In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid system to a selected periodic orbit of the Sun–Earth restricted three-body system: the orbit can be either a libration point periodic orbit (LPO) or a distant prograde periodic orbit (DPO) around the Earth. In detail, low-thrust propulsion is used to bring the joint spacecraft-asteroid system from the initial condition to a point belonging to the stable manifold associated to the final periodic orbit: from here onward, thanks to the intrinsic dynamics of the physical model adopted, the flight is purely ballistic. Dedicated guided and capture sets are introduced to exploit the combined use of low-thrust propulsion with stable manifolds trajectories, aiming at defining feasible first guess solutions. Then, an optimal control problem is formulated to refine and improve them. This approach enables a new class of missions, whose solutions are not obtainable neither through the patched-conics method nor through the classic invariant manifolds technique.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-014-9589-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Asteroid retrieval candidates ; ASTEROIDS ; Astrophysics ; Astrophysics and Astroparticles ; Classical Mechanics ; Distant prograde periodic orbit (DPO) ; Dynamical systems ; Dynamical Systems and Ergodic Theory ; DYNAMICS ; Earth ; Easily retrievable objects (EROs) ; EQUILIBRIUM POINTS ; Geophysics/Geodesy ; Invariant manifolds ; Invariants ; Libration point periodic orbit (LPO) ; Low-thrust propulsion ; Manifolds ; Matemàtiques i estadística ; Mecànica orbital ; MISSION DESIGN ; MOON TRAJECTORIES ; Near-Earth object capture ; Near-earth objects ; OBJECTS ; Optimal control problem ; OPTIMIZATION ; Orbital mechanics ; Orbits ; Original Article ; PERIODIC-ORBITS ; Physics ; Physics and Astronomy ; Problema dels tres cossos ; Propulsion ; Space exploration ; Spacecraft ; Special dedicated sets ; Three-body problem ; Trajectories ; TRANSFERS ; TRANSIT ORBITS ; Àrees temàtiques de la UPC</subject><ispartof>Celestial mechanics and dynamical astronomy, 2014-11, Vol.120 (3), p.309-336</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-5fdfbf532764256ec63315c226fd2d40f4d84d22121b8e6d14fa0ac128904bd53</citedby><cites>FETCH-LOGICAL-c560t-5fdfbf532764256ec63315c226fd2d40f4d84d22121b8e6d14fa0ac128904bd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10569-014-9589-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10569-014-9589-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,26951,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mingotti, G.</creatorcontrib><creatorcontrib>Sánchez, J. P.</creatorcontrib><creatorcontrib>McInnes, C. R.</creatorcontrib><title>Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid system to a selected periodic orbit of the Sun–Earth restricted three-body system: the orbit can be either a libration point periodic orbit (LPO) or a distant prograde periodic orbit (DPO) around the Earth. In detail, low-thrust propulsion is used to bring the joint spacecraft-asteroid system from the initial condition to a point belonging to the stable manifold associated to the final periodic orbit: from here onward, thanks to the intrinsic dynamics of the physical model adopted, the flight is purely ballistic. Dedicated guided and capture sets are introduced to exploit the combined use of low-thrust propulsion with stable manifolds trajectories, aiming at defining feasible first guess solutions. Then, an optimal control problem is formulated to refine and improve them. This approach enables a new class of missions, whose solutions are not obtainable neither through the patched-conics method nor through the classic invariant manifolds technique.</description><subject>Aerospace Technology and Astronautics</subject><subject>Asteroid retrieval candidates</subject><subject>ASTEROIDS</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Classical Mechanics</subject><subject>Distant prograde periodic orbit (DPO)</subject><subject>Dynamical systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>DYNAMICS</subject><subject>Earth</subject><subject>Easily retrievable objects (EROs)</subject><subject>EQUILIBRIUM POINTS</subject><subject>Geophysics/Geodesy</subject><subject>Invariant manifolds</subject><subject>Invariants</subject><subject>Libration point periodic orbit (LPO)</subject><subject>Low-thrust propulsion</subject><subject>Manifolds</subject><subject>Matemàtiques i estadística</subject><subject>Mecànica orbital</subject><subject>MISSION DESIGN</subject><subject>MOON TRAJECTORIES</subject><subject>Near-Earth object capture</subject><subject>Near-earth objects</subject><subject>OBJECTS</subject><subject>Optimal control problem</subject><subject>OPTIMIZATION</subject><subject>Orbital mechanics</subject><subject>Orbits</subject><subject>Original Article</subject><subject>PERIODIC-ORBITS</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Problema dels tres cossos</subject><subject>Propulsion</subject><subject>Space exploration</subject><subject>Spacecraft</subject><subject>Special dedicated sets</subject><subject>Three-body problem</subject><subject>Trajectories</subject><subject>TRANSFERS</subject><subject>TRANSIT ORBITS</subject><subject>Àrees temàtiques de la UPC</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>XX2</sourceid><recordid>eNqNkc2KFDEUhQtRsB19AHcBN27iJLeSVGUpTTsKw8xCXYdUfuw0VUmbpJTZ-QDufEOfxDQtOAiCixBCvnPPuZyue07JK0rIcFko4UJiQhmWfJRYPug2lA-AJRvGh92GSOgxtK_H3ZNSDoQQTiTfdN-3aZlCdBbN6Suu-7yWio45Hde5hBSRjhaF-EXnoGNFi47Bp9mimvXBmZpycAXVhIw-1jU7dLO7LY1Hde_Q-zX-_PZjp3PdIxOyWWedUXal5mBqM2xmzuEp2buT4TS75Wn3yOu5uGe_74vu45vdh-1bfH179W77-hobLkjF3Fs_ed7DIBhw4Yzoe8oNgPAWLCOe2ZFZAAp0Gp2wlHlNtKEwSsImy_uLjp7nmrIalZ1x2eiqkg5_HqcDZAAFrOeUNM3Ls6Zl_by2LdQSinHzrKNLa1G0ZQFO6AD_gcIgx4H1fUNf_IUe0ppjW75RlAoCQtB7eXMqJTuvjjksOt8pStSpfnWuX7X61al-JZsGzprS2PjJ5XuT_yn6BalqtMk</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Mingotti, G.</creator><creator>Sánchez, J. P.</creator><creator>McInnes, C. R.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7TB</scope><scope>FR3</scope><scope>XX2</scope></search><sort><creationdate>20141101</creationdate><title>Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem</title><author>Mingotti, G. ; Sánchez, J. P. ; McInnes, C. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-5fdfbf532764256ec63315c226fd2d40f4d84d22121b8e6d14fa0ac128904bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Asteroid retrieval candidates</topic><topic>ASTEROIDS</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Classical Mechanics</topic><topic>Distant prograde periodic orbit (DPO)</topic><topic>Dynamical systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>DYNAMICS</topic><topic>Earth</topic><topic>Easily retrievable objects (EROs)</topic><topic>EQUILIBRIUM POINTS</topic><topic>Geophysics/Geodesy</topic><topic>Invariant manifolds</topic><topic>Invariants</topic><topic>Libration point periodic orbit (LPO)</topic><topic>Low-thrust propulsion</topic><topic>Manifolds</topic><topic>Matemàtiques i estadística</topic><topic>Mecànica orbital</topic><topic>MISSION DESIGN</topic><topic>MOON TRAJECTORIES</topic><topic>Near-Earth object capture</topic><topic>Near-earth objects</topic><topic>OBJECTS</topic><topic>Optimal control problem</topic><topic>OPTIMIZATION</topic><topic>Orbital mechanics</topic><topic>Orbits</topic><topic>Original Article</topic><topic>PERIODIC-ORBITS</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Problema dels tres cossos</topic><topic>Propulsion</topic><topic>Space exploration</topic><topic>Spacecraft</topic><topic>Special dedicated sets</topic><topic>Three-body problem</topic><topic>Trajectories</topic><topic>TRANSFERS</topic><topic>TRANSIT ORBITS</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mingotti, G.</creatorcontrib><creatorcontrib>Sánchez, J. P.</creatorcontrib><creatorcontrib>McInnes, C. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Recercat</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mingotti, G.</au><au>Sánchez, J. P.</au><au>McInnes, C. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>120</volume><issue>3</issue><spage>309</spage><epage>336</epage><pages>309-336</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>In this paper, a method to capture near-Earth objects (NEOs) incorporating low-thrust propulsion into the invariant manifolds technique is investigated. Assuming that a tugboat-spacecraft is in a rendez-vous condition with the candidate asteroid, the aim is to take the joint spacecraft-asteroid system to a selected periodic orbit of the Sun–Earth restricted three-body system: the orbit can be either a libration point periodic orbit (LPO) or a distant prograde periodic orbit (DPO) around the Earth. In detail, low-thrust propulsion is used to bring the joint spacecraft-asteroid system from the initial condition to a point belonging to the stable manifold associated to the final periodic orbit: from here onward, thanks to the intrinsic dynamics of the physical model adopted, the flight is purely ballistic. Dedicated guided and capture sets are introduced to exploit the combined use of low-thrust propulsion with stable manifolds trajectories, aiming at defining feasible first guess solutions. Then, an optimal control problem is formulated to refine and improve them. This approach enables a new class of missions, whose solutions are not obtainable neither through the patched-conics method nor through the classic invariant manifolds technique.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-014-9589-9</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-2958 |
ispartof | Celestial mechanics and dynamical astronomy, 2014-11, Vol.120 (3), p.309-336 |
issn | 0923-2958 1572-9478 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_243510 |
source | Recercat; SpringerLink Journals |
subjects | Aerospace Technology and Astronautics Asteroid retrieval candidates ASTEROIDS Astrophysics Astrophysics and Astroparticles Classical Mechanics Distant prograde periodic orbit (DPO) Dynamical systems Dynamical Systems and Ergodic Theory DYNAMICS Earth Easily retrievable objects (EROs) EQUILIBRIUM POINTS Geophysics/Geodesy Invariant manifolds Invariants Libration point periodic orbit (LPO) Low-thrust propulsion Manifolds Matemàtiques i estadística Mecànica orbital MISSION DESIGN MOON TRAJECTORIES Near-Earth object capture Near-earth objects OBJECTS Optimal control problem OPTIMIZATION Orbital mechanics Orbits Original Article PERIODIC-ORBITS Physics Physics and Astronomy Problema dels tres cossos Propulsion Space exploration Spacecraft Special dedicated sets Three-body problem Trajectories TRANSFERS TRANSIT ORBITS Àrees temàtiques de la UPC |
title | Combined low-thrust propulsion and invariant manifold trajectories to capture NEOs in the Sun–Earth circular restricted three-body problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20low-thrust%20propulsion%20and%20invariant%20manifold%20trajectories%20to%20capture%20NEOs%20in%20the%20Sun%E2%80%93Earth%20circular%20restricted%20three-body%20problem&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Mingotti,%20G.&rft.date=2014-11-01&rft.volume=120&rft.issue=3&rft.spage=309&rft.epage=336&rft.pages=309-336&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-014-9589-9&rft_dat=%3Cproquest_csuc_%3E1642250172%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1611602661&rft_id=info:pmid/&rfr_iscdi=true |