EXTENDING THE ROUGHNESS OF THE DATA VIA TRANSITIVE CLOSURES OF SIMILARITY INDEXES

One main assumption in the theory of rough sets applied to information tables is that the elements that exhibit the same information are indiscernible (similar) and form blocks that can be understood as elementary granules of knowledge about the universe. We propose a variant of this concept definin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FUZZY ECONOMIC REVIEW 2007, Vol.12 (2), p.75-84
Hauptverfasser: Ferrer, J.C, Clara, N, Bertran, F.X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 2
container_start_page 75
container_title FUZZY ECONOMIC REVIEW
container_volume 12
creator Ferrer, J.C
Clara, N
Bertran, F.X
description One main assumption in the theory of rough sets applied to information tables is that the elements that exhibit the same information are indiscernible (similar) and form blocks that can be understood as elementary granules of knowledge about the universe. We propose a variant of this concept defining a measure of similarity between the elements of the universe in order to consider that two objects can be indiscernible even though they do not share all the attribute values because the knowledge is partial or uncertain. The set of similarities define a matrix of a fuzzy relation satisfying reflexivity and symmetry but transitivity thus a partition of the universe is not attained. This problem can be solved calculating its transitive closure what ensure a partition for each level belonging to the unit interval [0,1]. This procedure allows generalizing the theory of rough sets depending on the minimum level of similarity accepted. This new point of view increases the rough character of the data because increases the set of indiscernible objects. Finally, we apply our results to a not real application to be capable to remark the differences and the improvements between this methodology and the classical one.
doi_str_mv 10.25102/fer.2007.02.03
format Article
fullrecord <record><control><sourceid>proquest_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_239703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1905554881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-a717cca45f1b39da4973f210b86b8ab003fbbd28f0c03b3aa06c7424286459bc3</originalsourceid><addsrcrecordid>eNpFUF1r2zAUFWOFhq7PfTV7d3r1Yct6NImaCDKHxU5pn4SsStRlnTM5KU1__RSnbA_nfnHO4XIQusEwJRkGcutdmBIAPgUyBfoFTQhjWcqwIF_RBGOap5AJeomuh6FrARgRvAA-QT_lQyOruaoWSbOUyWa9XSwrWdfJ-m48zMumTO5VmTSbsqpVo-5lMlut6-1Gjpxa_VCrcqOax0RVc_kg62_owptfg7v-7Fdoeyeb2TJdrRdqVq5SSzGnqeGYW2tY5nFLxZNhglNPMLRF3hYmvkh92z6RwoMF2lJjILecEUaKnGWitfQK4bOvHQ5WB2ddsGave9P9X04gwIkmVHCgUfP9rNmF_s_BDXv90h_C7_imJkSAwAXkkXT7aRz6YQjO613oXk04agx6TFvHtPUpbR3n0VadFcHtnP1H9x9Hf_hwttdvmpr3rov1GDEqqTmtJGIXwTNdMP28f6V_AaL-g-E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229091806</pqid></control><display><type>article</type><title>EXTENDING THE ROUGHNESS OF THE DATA VIA TRANSITIVE CLOSURES OF SIMILARITY INDEXES</title><source>Recercat</source><creator>Ferrer, J.C ; Clara, N ; Bertran, F.X</creator><creatorcontrib>Ferrer, J.C ; Clara, N ; Bertran, F.X</creatorcontrib><description>One main assumption in the theory of rough sets applied to information tables is that the elements that exhibit the same information are indiscernible (similar) and form blocks that can be understood as elementary granules of knowledge about the universe. We propose a variant of this concept defining a measure of similarity between the elements of the universe in order to consider that two objects can be indiscernible even though they do not share all the attribute values because the knowledge is partial or uncertain. The set of similarities define a matrix of a fuzzy relation satisfying reflexivity and symmetry but transitivity thus a partition of the universe is not attained. This problem can be solved calculating its transitive closure what ensure a partition for each level belonging to the unit interval [0,1]. This procedure allows generalizing the theory of rough sets depending on the minimum level of similarity accepted. This new point of view increases the rough character of the data because increases the set of indiscernible objects. Finally, we apply our results to a not real application to be capable to remark the differences and the improvements between this methodology and the classical one.</description><identifier>ISSN: 1136-0593</identifier><identifier>EISSN: 2445-4192</identifier><identifier>DOI: 10.25102/fer.2007.02.03</identifier><language>eng</language><publisher>Reus: International Association for Fuzzy-set Management and Economy (SIGEF)</publisher><subject>Conjunts aproximats ; Conjunts borrosos ; fuzzy relation ; Fuzzy sets ; fuzzy similarity index ; Indexes ; Indiscernibility relation ; Rough sets ; Set theory ; Studies ; transitive closure</subject><ispartof>FUZZY ECONOMIC REVIEW, 2007, Vol.12 (2), p.75-84</ispartof><rights>Copyright International Association for Fuzzy Set Management and Economy (SIGEF) Nov 2007</rights><rights>Tots els drets reservats</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,4008,26974</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/239703$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc><backlink>$$Uhttp://econpapers.repec.org/article/fzyfuzeco/v_3axii_3ay_3a2007_3ai_3a2_3ap_3a75-84.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferrer, J.C</creatorcontrib><creatorcontrib>Clara, N</creatorcontrib><creatorcontrib>Bertran, F.X</creatorcontrib><title>EXTENDING THE ROUGHNESS OF THE DATA VIA TRANSITIVE CLOSURES OF SIMILARITY INDEXES</title><title>FUZZY ECONOMIC REVIEW</title><description>One main assumption in the theory of rough sets applied to information tables is that the elements that exhibit the same information are indiscernible (similar) and form blocks that can be understood as elementary granules of knowledge about the universe. We propose a variant of this concept defining a measure of similarity between the elements of the universe in order to consider that two objects can be indiscernible even though they do not share all the attribute values because the knowledge is partial or uncertain. The set of similarities define a matrix of a fuzzy relation satisfying reflexivity and symmetry but transitivity thus a partition of the universe is not attained. This problem can be solved calculating its transitive closure what ensure a partition for each level belonging to the unit interval [0,1]. This procedure allows generalizing the theory of rough sets depending on the minimum level of similarity accepted. This new point of view increases the rough character of the data because increases the set of indiscernible objects. Finally, we apply our results to a not real application to be capable to remark the differences and the improvements between this methodology and the classical one.</description><subject>Conjunts aproximats</subject><subject>Conjunts borrosos</subject><subject>fuzzy relation</subject><subject>Fuzzy sets</subject><subject>fuzzy similarity index</subject><subject>Indexes</subject><subject>Indiscernibility relation</subject><subject>Rough sets</subject><subject>Set theory</subject><subject>Studies</subject><subject>transitive closure</subject><issn>1136-0593</issn><issn>2445-4192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>XX2</sourceid><recordid>eNpFUF1r2zAUFWOFhq7PfTV7d3r1Yct6NImaCDKHxU5pn4SsStRlnTM5KU1__RSnbA_nfnHO4XIQusEwJRkGcutdmBIAPgUyBfoFTQhjWcqwIF_RBGOap5AJeomuh6FrARgRvAA-QT_lQyOruaoWSbOUyWa9XSwrWdfJ-m48zMumTO5VmTSbsqpVo-5lMlut6-1Gjpxa_VCrcqOax0RVc_kg62_owptfg7v-7Fdoeyeb2TJdrRdqVq5SSzGnqeGYW2tY5nFLxZNhglNPMLRF3hYmvkh92z6RwoMF2lJjILecEUaKnGWitfQK4bOvHQ5WB2ddsGave9P9X04gwIkmVHCgUfP9rNmF_s_BDXv90h_C7_imJkSAwAXkkXT7aRz6YQjO613oXk04agx6TFvHtPUpbR3n0VadFcHtnP1H9x9Hf_hwttdvmpr3rov1GDEqqTmtJGIXwTNdMP28f6V_AaL-g-E</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Ferrer, J.C</creator><creator>Clara, N</creator><creator>Bertran, F.X</creator><general>International Association for Fuzzy-set Management and Economy (SIGEF)</general><general>International Association for Fuzzy Set Management and Economy (SIGEF)</general><general>SIGEF. Facultat de Ciències Econòmiques i Empresarials</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4U-</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BFMQW</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>XX2</scope></search><sort><creationdate>2007</creationdate><title>EXTENDING THE ROUGHNESS OF THE DATA VIA TRANSITIVE CLOSURES OF SIMILARITY INDEXES</title><author>Ferrer, J.C ; Clara, N ; Bertran, F.X</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-a717cca45f1b39da4973f210b86b8ab003fbbd28f0c03b3aa06c7424286459bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Conjunts aproximats</topic><topic>Conjunts borrosos</topic><topic>fuzzy relation</topic><topic>Fuzzy sets</topic><topic>fuzzy similarity index</topic><topic>Indexes</topic><topic>Indiscernibility relation</topic><topic>Rough sets</topic><topic>Set theory</topic><topic>Studies</topic><topic>transitive closure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrer, J.C</creatorcontrib><creatorcontrib>Clara, N</creatorcontrib><creatorcontrib>Bertran, F.X</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Continental Europe Database</collection><collection>ProQuest One Community College</collection><collection>Latin America &amp; Iberia Database</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Recercat</collection><jtitle>FUZZY ECONOMIC REVIEW</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ferrer, J.C</au><au>Clara, N</au><au>Bertran, F.X</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EXTENDING THE ROUGHNESS OF THE DATA VIA TRANSITIVE CLOSURES OF SIMILARITY INDEXES</atitle><jtitle>FUZZY ECONOMIC REVIEW</jtitle><date>2007</date><risdate>2007</risdate><volume>12</volume><issue>2</issue><spage>75</spage><epage>84</epage><pages>75-84</pages><issn>1136-0593</issn><eissn>2445-4192</eissn><abstract>One main assumption in the theory of rough sets applied to information tables is that the elements that exhibit the same information are indiscernible (similar) and form blocks that can be understood as elementary granules of knowledge about the universe. We propose a variant of this concept defining a measure of similarity between the elements of the universe in order to consider that two objects can be indiscernible even though they do not share all the attribute values because the knowledge is partial or uncertain. The set of similarities define a matrix of a fuzzy relation satisfying reflexivity and symmetry but transitivity thus a partition of the universe is not attained. This problem can be solved calculating its transitive closure what ensure a partition for each level belonging to the unit interval [0,1]. This procedure allows generalizing the theory of rough sets depending on the minimum level of similarity accepted. This new point of view increases the rough character of the data because increases the set of indiscernible objects. Finally, we apply our results to a not real application to be capable to remark the differences and the improvements between this methodology and the classical one.</abstract><cop>Reus</cop><pub>International Association for Fuzzy-set Management and Economy (SIGEF)</pub><doi>10.25102/fer.2007.02.03</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1136-0593
ispartof FUZZY ECONOMIC REVIEW, 2007, Vol.12 (2), p.75-84
issn 1136-0593
2445-4192
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_239703
source Recercat
subjects Conjunts aproximats
Conjunts borrosos
fuzzy relation
Fuzzy sets
fuzzy similarity index
Indexes
Indiscernibility relation
Rough sets
Set theory
Studies
transitive closure
title EXTENDING THE ROUGHNESS OF THE DATA VIA TRANSITIVE CLOSURES OF SIMILARITY INDEXES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EXTENDING%20THE%20ROUGHNESS%20OF%20THE%20DATA%20VIA%20TRANSITIVE%20CLOSURES%20OF%20SIMILARITY%20INDEXES&rft.jtitle=FUZZY%20ECONOMIC%20REVIEW&rft.au=Ferrer,%20J.C&rft.date=2007&rft.volume=12&rft.issue=2&rft.spage=75&rft.epage=84&rft.pages=75-84&rft.issn=1136-0593&rft.eissn=2445-4192&rft_id=info:doi/10.25102/fer.2007.02.03&rft_dat=%3Cproquest_XX2%3E1905554881%3C/proquest_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229091806&rft_id=info:pmid/&rfr_iscdi=true