Synergistic Computational-Experimental Approach to Improve Ionene Polymer-Based Functional Hydrogels

The manifold applications of ionene‐based materials such as hydrogels in daily life, biomedical sciences, and industrial processes are a consequence of their unique physical and chemical properties, which are governed by a judicious balance between multiple non‐covalent interactions. However, one of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2014-08, Vol.24 (31), p.4893-4904
Hauptverfasser: Bachl, Jürgen, Zanuy, David, López-Pérez, Daniel E., Revilla-López, Guillermo, Cativiela, Carlos, Alemán, Carlos, Díaz, David Díaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4904
container_issue 31
container_start_page 4893
container_title Advanced functional materials
container_volume 24
creator Bachl, Jürgen
Zanuy, David
López-Pérez, Daniel E.
Revilla-López, Guillermo
Cativiela, Carlos
Alemán, Carlos
Díaz, David Díaz
description The manifold applications of ionene‐based materials such as hydrogels in daily life, biomedical sciences, and industrial processes are a consequence of their unique physical and chemical properties, which are governed by a judicious balance between multiple non‐covalent interactions. However, one of the most critical aspects identified for a broader use of different polyelectrolytes is the need of raising their gelation efficiency. This work focuses on surfactant‐free ionene polymers 1−3 containing DABCO and N,N′‐(x‐phenylene)dibenzamide (x = ortho‐/meta‐/para‐) linkages as model systems to develop a combined computational‐experimental approach to improve the hydrogelation through a better understanding of the gelation mechanism. Molecular dynamics simulations of isomeric ionenes 1–3 with explicit water molecules point out remarkable differences in the assembly of the polymeric chains in each case. Interchain regions with high degree of hydration (i.e., polymer···water interactions) and zones dominated by polymer···polymer interactions are evident in the case of ortho‐ (1) and meta‐ (2) isomeric ionenes, whereas domains controlled by polymer···polymer interactions are practically inexistent in 3. In excellent agreement, ortho‐ionene 1 provides experimentally the best hydrogels with unique features such as thixotropic behavior and dispersion ability for single‐walles carbon nanotubes. A combined computational‐experimental approach identifies the topological constraints necessary to enhance gelation efficiency and achieve superior properties of hydrogels made from DABCO‐containing ionene polymers. The best performance of studied ionenes is established based on the critical gelation concentration, gelation kinetics, thermal and mechanical stability, optical properties, and dispersion ability for single‐walled carbon nanotubes.
doi_str_mv 10.1002/adfm.201304230
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_239576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1567120585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4720-4ca51621f121724d900e8318b22de0c396977e782625b2406e4b1897a55d06f33</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSMEEm3pteccuWQZj2M7OS7bbnfVFpAoojfL60xKaBKndgLNvyerVNveOIxmRnrfk2ZeFJ0xWDAA_GSKslkgMA4pcngTHTHJZMIBs7eHmd29j45D-A3AlOLpUVR8H1vy91XoKxuvXNMNvekr15o6uXjqyFcNtb2p42XXeWfsr7h38baZ5j8Ub11LLcXfXD025JPPJlARr4fWzgbxZiy8u6c6fIjelaYOdPrcT6If64vb1Sa5_nq5XS2vE5sqhCS1RjCJrGTIFKZFDkAZZ9kOsSCwPJe5UqQylCh2mIKkdMeyXBkhCpAl5ycRm31tGKz2ZMlb02tnqpdlXwgKNfJcKDkxH2dmuulxoNDrpgqW6tq05IagmZCKIYhMTNLFs713IXgqdTf9x_hRM9D7CPQ-An2IYALyGfhb1TT-R62X5-ub12wys1M09HRgjX_QUnEl9M8vl3qT3azwSq11zv8BltuZQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567120585</pqid></control><display><type>article</type><title>Synergistic Computational-Experimental Approach to Improve Ionene Polymer-Based Functional Hydrogels</title><source>Recercat</source><source>Wiley Online Library All Journals</source><creator>Bachl, Jürgen ; Zanuy, David ; López-Pérez, Daniel E. ; Revilla-López, Guillermo ; Cativiela, Carlos ; Alemán, Carlos ; Díaz, David Díaz</creator><creatorcontrib>Bachl, Jürgen ; Zanuy, David ; López-Pérez, Daniel E. ; Revilla-López, Guillermo ; Cativiela, Carlos ; Alemán, Carlos ; Díaz, David Díaz</creatorcontrib><description>The manifold applications of ionene‐based materials such as hydrogels in daily life, biomedical sciences, and industrial processes are a consequence of their unique physical and chemical properties, which are governed by a judicious balance between multiple non‐covalent interactions. However, one of the most critical aspects identified for a broader use of different polyelectrolytes is the need of raising their gelation efficiency. This work focuses on surfactant‐free ionene polymers 1−3 containing DABCO and N,N′‐(x‐phenylene)dibenzamide (x = ortho‐/meta‐/para‐) linkages as model systems to develop a combined computational‐experimental approach to improve the hydrogelation through a better understanding of the gelation mechanism. Molecular dynamics simulations of isomeric ionenes 1–3 with explicit water molecules point out remarkable differences in the assembly of the polymeric chains in each case. Interchain regions with high degree of hydration (i.e., polymer···water interactions) and zones dominated by polymer···polymer interactions are evident in the case of ortho‐ (1) and meta‐ (2) isomeric ionenes, whereas domains controlled by polymer···polymer interactions are practically inexistent in 3. In excellent agreement, ortho‐ionene 1 provides experimentally the best hydrogels with unique features such as thixotropic behavior and dispersion ability for single‐walles carbon nanotubes. A combined computational‐experimental approach identifies the topological constraints necessary to enhance gelation efficiency and achieve superior properties of hydrogels made from DABCO‐containing ionene polymers. The best performance of studied ionenes is established based on the critical gelation concentration, gelation kinetics, thermal and mechanical stability, optical properties, and dispersion ability for single‐walled carbon nanotubes.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201304230</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>BINDING ; Colloids ; Col·loides ; Computation ; DISPERSION ; Dispersions ; Dynamical systems ; Enginyeria química ; Gelation ; GELATOR ; GENE DELIVERY ; Hydrogels ; Ionenes ; MECHANICAL-PROPERTIES ; molecular dynamics ; MOLECULAR-DYNAMICS SIMULATION ; OLIGOMERIC ELECTROLYTE ; polyelectrolytes ; Polymers ; Polímers ; QUATERNARY AMMONIUM ; Single wall carbon nanotubes ; STRENGTH ; WALLED CARBON NANOTUBES ; Àrees temàtiques de la UPC</subject><ispartof>Advanced functional materials, 2014-08, Vol.24 (31), p.4893-4904</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4720-4ca51621f121724d900e8318b22de0c396977e782625b2406e4b1897a55d06f33</citedby><cites>FETCH-LOGICAL-c4720-4ca51621f121724d900e8318b22de0c396977e782625b2406e4b1897a55d06f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201304230$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201304230$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,26974,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bachl, Jürgen</creatorcontrib><creatorcontrib>Zanuy, David</creatorcontrib><creatorcontrib>López-Pérez, Daniel E.</creatorcontrib><creatorcontrib>Revilla-López, Guillermo</creatorcontrib><creatorcontrib>Cativiela, Carlos</creatorcontrib><creatorcontrib>Alemán, Carlos</creatorcontrib><creatorcontrib>Díaz, David Díaz</creatorcontrib><title>Synergistic Computational-Experimental Approach to Improve Ionene Polymer-Based Functional Hydrogels</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The manifold applications of ionene‐based materials such as hydrogels in daily life, biomedical sciences, and industrial processes are a consequence of their unique physical and chemical properties, which are governed by a judicious balance between multiple non‐covalent interactions. However, one of the most critical aspects identified for a broader use of different polyelectrolytes is the need of raising their gelation efficiency. This work focuses on surfactant‐free ionene polymers 1−3 containing DABCO and N,N′‐(x‐phenylene)dibenzamide (x = ortho‐/meta‐/para‐) linkages as model systems to develop a combined computational‐experimental approach to improve the hydrogelation through a better understanding of the gelation mechanism. Molecular dynamics simulations of isomeric ionenes 1–3 with explicit water molecules point out remarkable differences in the assembly of the polymeric chains in each case. Interchain regions with high degree of hydration (i.e., polymer···water interactions) and zones dominated by polymer···polymer interactions are evident in the case of ortho‐ (1) and meta‐ (2) isomeric ionenes, whereas domains controlled by polymer···polymer interactions are practically inexistent in 3. In excellent agreement, ortho‐ionene 1 provides experimentally the best hydrogels with unique features such as thixotropic behavior and dispersion ability for single‐walles carbon nanotubes. A combined computational‐experimental approach identifies the topological constraints necessary to enhance gelation efficiency and achieve superior properties of hydrogels made from DABCO‐containing ionene polymers. The best performance of studied ionenes is established based on the critical gelation concentration, gelation kinetics, thermal and mechanical stability, optical properties, and dispersion ability for single‐walled carbon nanotubes.</description><subject>BINDING</subject><subject>Colloids</subject><subject>Col·loides</subject><subject>Computation</subject><subject>DISPERSION</subject><subject>Dispersions</subject><subject>Dynamical systems</subject><subject>Enginyeria química</subject><subject>Gelation</subject><subject>GELATOR</subject><subject>GENE DELIVERY</subject><subject>Hydrogels</subject><subject>Ionenes</subject><subject>MECHANICAL-PROPERTIES</subject><subject>molecular dynamics</subject><subject>MOLECULAR-DYNAMICS SIMULATION</subject><subject>OLIGOMERIC ELECTROLYTE</subject><subject>polyelectrolytes</subject><subject>Polymers</subject><subject>Polímers</subject><subject>QUATERNARY AMMONIUM</subject><subject>Single wall carbon nanotubes</subject><subject>STRENGTH</subject><subject>WALLED CARBON NANOTUBES</subject><subject>Àrees temàtiques de la UPC</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkUFv1DAQhSMEEm3pteccuWQZj2M7OS7bbnfVFpAoojfL60xKaBKndgLNvyerVNveOIxmRnrfk2ZeFJ0xWDAA_GSKslkgMA4pcngTHTHJZMIBs7eHmd29j45D-A3AlOLpUVR8H1vy91XoKxuvXNMNvekr15o6uXjqyFcNtb2p42XXeWfsr7h38baZ5j8Ub11LLcXfXD025JPPJlARr4fWzgbxZiy8u6c6fIjelaYOdPrcT6If64vb1Sa5_nq5XS2vE5sqhCS1RjCJrGTIFKZFDkAZZ9kOsSCwPJe5UqQylCh2mIKkdMeyXBkhCpAl5ycRm31tGKz2ZMlb02tnqpdlXwgKNfJcKDkxH2dmuulxoNDrpgqW6tq05IagmZCKIYhMTNLFs713IXgqdTf9x_hRM9D7CPQ-An2IYALyGfhb1TT-R62X5-ub12wys1M09HRgjX_QUnEl9M8vl3qT3azwSq11zv8BltuZQw</recordid><startdate>20140820</startdate><enddate>20140820</enddate><creator>Bachl, Jürgen</creator><creator>Zanuy, David</creator><creator>López-Pérez, Daniel E.</creator><creator>Revilla-López, Guillermo</creator><creator>Cativiela, Carlos</creator><creator>Alemán, Carlos</creator><creator>Díaz, David Díaz</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>XX2</scope></search><sort><creationdate>20140820</creationdate><title>Synergistic Computational-Experimental Approach to Improve Ionene Polymer-Based Functional Hydrogels</title><author>Bachl, Jürgen ; Zanuy, David ; López-Pérez, Daniel E. ; Revilla-López, Guillermo ; Cativiela, Carlos ; Alemán, Carlos ; Díaz, David Díaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4720-4ca51621f121724d900e8318b22de0c396977e782625b2406e4b1897a55d06f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>BINDING</topic><topic>Colloids</topic><topic>Col·loides</topic><topic>Computation</topic><topic>DISPERSION</topic><topic>Dispersions</topic><topic>Dynamical systems</topic><topic>Enginyeria química</topic><topic>Gelation</topic><topic>GELATOR</topic><topic>GENE DELIVERY</topic><topic>Hydrogels</topic><topic>Ionenes</topic><topic>MECHANICAL-PROPERTIES</topic><topic>molecular dynamics</topic><topic>MOLECULAR-DYNAMICS SIMULATION</topic><topic>OLIGOMERIC ELECTROLYTE</topic><topic>polyelectrolytes</topic><topic>Polymers</topic><topic>Polímers</topic><topic>QUATERNARY AMMONIUM</topic><topic>Single wall carbon nanotubes</topic><topic>STRENGTH</topic><topic>WALLED CARBON NANOTUBES</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachl, Jürgen</creatorcontrib><creatorcontrib>Zanuy, David</creatorcontrib><creatorcontrib>López-Pérez, Daniel E.</creatorcontrib><creatorcontrib>Revilla-López, Guillermo</creatorcontrib><creatorcontrib>Cativiela, Carlos</creatorcontrib><creatorcontrib>Alemán, Carlos</creatorcontrib><creatorcontrib>Díaz, David Díaz</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachl, Jürgen</au><au>Zanuy, David</au><au>López-Pérez, Daniel E.</au><au>Revilla-López, Guillermo</au><au>Cativiela, Carlos</au><au>Alemán, Carlos</au><au>Díaz, David Díaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic Computational-Experimental Approach to Improve Ionene Polymer-Based Functional Hydrogels</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2014-08-20</date><risdate>2014</risdate><volume>24</volume><issue>31</issue><spage>4893</spage><epage>4904</epage><pages>4893-4904</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The manifold applications of ionene‐based materials such as hydrogels in daily life, biomedical sciences, and industrial processes are a consequence of their unique physical and chemical properties, which are governed by a judicious balance between multiple non‐covalent interactions. However, one of the most critical aspects identified for a broader use of different polyelectrolytes is the need of raising their gelation efficiency. This work focuses on surfactant‐free ionene polymers 1−3 containing DABCO and N,N′‐(x‐phenylene)dibenzamide (x = ortho‐/meta‐/para‐) linkages as model systems to develop a combined computational‐experimental approach to improve the hydrogelation through a better understanding of the gelation mechanism. Molecular dynamics simulations of isomeric ionenes 1–3 with explicit water molecules point out remarkable differences in the assembly of the polymeric chains in each case. Interchain regions with high degree of hydration (i.e., polymer···water interactions) and zones dominated by polymer···polymer interactions are evident in the case of ortho‐ (1) and meta‐ (2) isomeric ionenes, whereas domains controlled by polymer···polymer interactions are practically inexistent in 3. In excellent agreement, ortho‐ionene 1 provides experimentally the best hydrogels with unique features such as thixotropic behavior and dispersion ability for single‐walles carbon nanotubes. A combined computational‐experimental approach identifies the topological constraints necessary to enhance gelation efficiency and achieve superior properties of hydrogels made from DABCO‐containing ionene polymers. The best performance of studied ionenes is established based on the critical gelation concentration, gelation kinetics, thermal and mechanical stability, optical properties, and dispersion ability for single‐walled carbon nanotubes.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201304230</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2014-08, Vol.24 (31), p.4893-4904
issn 1616-301X
1616-3028
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_239576
source Recercat; Wiley Online Library All Journals
subjects BINDING
Colloids
Col·loides
Computation
DISPERSION
Dispersions
Dynamical systems
Enginyeria química
Gelation
GELATOR
GENE DELIVERY
Hydrogels
Ionenes
MECHANICAL-PROPERTIES
molecular dynamics
MOLECULAR-DYNAMICS SIMULATION
OLIGOMERIC ELECTROLYTE
polyelectrolytes
Polymers
Polímers
QUATERNARY AMMONIUM
Single wall carbon nanotubes
STRENGTH
WALLED CARBON NANOTUBES
Àrees temàtiques de la UPC
title Synergistic Computational-Experimental Approach to Improve Ionene Polymer-Based Functional Hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20Computational-Experimental%20Approach%20to%20Improve%20Ionene%20Polymer-Based%20Functional%20Hydrogels&rft.jtitle=Advanced%20functional%20materials&rft.au=Bachl,%20J%C3%BCrgen&rft.date=2014-08-20&rft.volume=24&rft.issue=31&rft.spage=4893&rft.epage=4904&rft.pages=4893-4904&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201304230&rft_dat=%3Cproquest_csuc_%3E1567120585%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567120585&rft_id=info:pmid/&rfr_iscdi=true