Water transport study in a high temperature proton exchange membrane fuel cell stack
A study of water transport in a high temperature phosphoric acid doped polybenzimidazole (PBI) membrane fuel cell stack is reported. Tests with different stoichiometries of dry cathode and different humidity levels of anode are performed. It is found that water transport across the membrane electrod...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2014-07, Vol.39 (20), p.10627-10640 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10640 |
---|---|
container_issue | 20 |
container_start_page | 10627 |
container_title | International journal of hydrogen energy |
container_volume | 39 |
creator | Bezmalinović, Dario Strahl, Stephan Roda, Vicente Husar, Attila |
description | A study of water transport in a high temperature phosphoric acid doped polybenzimidazole (PBI) membrane fuel cell stack is reported. Tests with different stoichiometries of dry cathode and different humidity levels of anode are performed. It is found that water transport across the membrane electrode assembly (MEA) is noteworthy and that water vapor partial pressure on the anode outlet is almost always higher than on the cathode outlet, even when using dry hydrogen. The water transport is a strong function of current density but it also depends on stoichiometry and humidity level. In a series of tests with dry nitrogen on one side and humid nitrogen on the other side, the membrane's water permeability coefficient is determined to be 2.4 × 10−13 mol s−1 cm−1 Pa−1 at 160 °C which is more than an order of magnitude higher than the values previously reported in the literature. Also, the results indicate that the permeability coefficient might be relative humidity dependent and could even be somewhat higher than the value reported here, but further investigation is needed. The experimental findings are reproduced and explained with a 2D steady state computational fluid dynamics (CFD) model. Internal water transport profiles across the membrane and along the gas flow channels are presented and discussed.
•Water transport in a 12 cell PBI-based HTPEM fuel cell stack is investigated.•Even with dry gases up to 10% of water leaves the stack through the anode outlet.•Water transport from cathode to anode rises with current density.•Anode outlet water concentration is almost always higher than on the cathode.•Membrane water permeability is determined to be 2.4 × 10−13 mol s−1 cm−1 Pa−1 at 160 °C. |
doi_str_mv | 10.1016/j.ijhydene.2014.04.186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_238668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319914012762</els_id><sourcerecordid>1559647118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-445b974d97d426b386d6bcd89e8a8b828618e97fc2a203bf38c5d6ad5a1086f03</originalsourceid><addsrcrecordid>eNqFkUuLFDEUhYMo2I7-BclGcFM1eVUeO2VwdGDAzYjLkEpuTaetR5ukxP73puhWl7MIl8D9zr3nHoTeUtJSQuX1oY2H_SnADC0jVLREtFTLZ2hHtTINF1o9RzvCJWk4NeYlepXzgRCqiDA79PDdFUi4JDfn45IKzmUNJxxn7PA-Pu5xgekIyZU1AT6mpSwzht9-7-ZHwBNMfQUBDyuM2MM4Vtz5H6_Ri8GNGd5c6hX6dvvp4eZLc__1893Nx_vGd7wrjRBdb5QIRgXBZM-1DLL3QRvQTveaaUk1GDV45hjh_cC174J0oXOUaDkQfoXoWdfn1dsEHpJ3xS4u_v9sjxHFLKv6Ulfm_ZmpZn6ukIudYt5Wrz6WNVsqFZWEKcKfbu06I4WidFOVl03SknOCwR5TnFw6WUrslpI92L8p2S0lS4StKVXw3WWGy96NQz2nj_kfzXTHNOGb1Q_nPqj3_BUh2ewjzB5CrFaLDUt8atQf58erZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559647118</pqid></control><display><type>article</type><title>Water transport study in a high temperature proton exchange membrane fuel cell stack</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Bezmalinović, Dario ; Strahl, Stephan ; Roda, Vicente ; Husar, Attila</creator><creatorcontrib>Bezmalinović, Dario ; Strahl, Stephan ; Roda, Vicente ; Husar, Attila</creatorcontrib><description>A study of water transport in a high temperature phosphoric acid doped polybenzimidazole (PBI) membrane fuel cell stack is reported. Tests with different stoichiometries of dry cathode and different humidity levels of anode are performed. It is found that water transport across the membrane electrode assembly (MEA) is noteworthy and that water vapor partial pressure on the anode outlet is almost always higher than on the cathode outlet, even when using dry hydrogen. The water transport is a strong function of current density but it also depends on stoichiometry and humidity level. In a series of tests with dry nitrogen on one side and humid nitrogen on the other side, the membrane's water permeability coefficient is determined to be 2.4 × 10−13 mol s−1 cm−1 Pa−1 at 160 °C which is more than an order of magnitude higher than the values previously reported in the literature. Also, the results indicate that the permeability coefficient might be relative humidity dependent and could even be somewhat higher than the value reported here, but further investigation is needed. The experimental findings are reproduced and explained with a 2D steady state computational fluid dynamics (CFD) model. Internal water transport profiles across the membrane and along the gas flow channels are presented and discussed.
•Water transport in a 12 cell PBI-based HTPEM fuel cell stack is investigated.•Even with dry gases up to 10% of water leaves the stack through the anode outlet.•Water transport from cathode to anode rises with current density.•Anode outlet water concentration is almost always higher than on the cathode.•Membrane water permeability is determined to be 2.4 × 10−13 mol s−1 cm−1 Pa−1 at 160 °C.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2014.04.186</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Cathodes ; Coefficients ; Control electrònic ; Drying ; Emmagatzematge i transport de l'energia ; Energies ; Energy ; Exact sciences and technology ; Fuels ; HTPEM ; Humidification ; Hydrogen ; Membranes ; Membranes (Technology) ; Modeling ; Outlets ; PBI ; PEMFCs ; Permeability ; Piles de combustible ; Polybenzimidazoles ; Power generation control ; Proton exchange membrane fuel cells ; Tecnologia energètica ; Transport ; Water transport ; Àrees temàtiques de la UPC</subject><ispartof>International journal of hydrogen energy, 2014-07, Vol.39 (20), p.10627-10640</ispartof><rights>2014 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-445b974d97d426b386d6bcd89e8a8b828618e97fc2a203bf38c5d6ad5a1086f03</citedby><cites>FETCH-LOGICAL-c535t-445b974d97d426b386d6bcd89e8a8b828618e97fc2a203bf38c5d6ad5a1086f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319914012762$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28528030$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bezmalinović, Dario</creatorcontrib><creatorcontrib>Strahl, Stephan</creatorcontrib><creatorcontrib>Roda, Vicente</creatorcontrib><creatorcontrib>Husar, Attila</creatorcontrib><title>Water transport study in a high temperature proton exchange membrane fuel cell stack</title><title>International journal of hydrogen energy</title><description>A study of water transport in a high temperature phosphoric acid doped polybenzimidazole (PBI) membrane fuel cell stack is reported. Tests with different stoichiometries of dry cathode and different humidity levels of anode are performed. It is found that water transport across the membrane electrode assembly (MEA) is noteworthy and that water vapor partial pressure on the anode outlet is almost always higher than on the cathode outlet, even when using dry hydrogen. The water transport is a strong function of current density but it also depends on stoichiometry and humidity level. In a series of tests with dry nitrogen on one side and humid nitrogen on the other side, the membrane's water permeability coefficient is determined to be 2.4 × 10−13 mol s−1 cm−1 Pa−1 at 160 °C which is more than an order of magnitude higher than the values previously reported in the literature. Also, the results indicate that the permeability coefficient might be relative humidity dependent and could even be somewhat higher than the value reported here, but further investigation is needed. The experimental findings are reproduced and explained with a 2D steady state computational fluid dynamics (CFD) model. Internal water transport profiles across the membrane and along the gas flow channels are presented and discussed.
•Water transport in a 12 cell PBI-based HTPEM fuel cell stack is investigated.•Even with dry gases up to 10% of water leaves the stack through the anode outlet.•Water transport from cathode to anode rises with current density.•Anode outlet water concentration is almost always higher than on the cathode.•Membrane water permeability is determined to be 2.4 × 10−13 mol s−1 cm−1 Pa−1 at 160 °C.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Cathodes</subject><subject>Coefficients</subject><subject>Control electrònic</subject><subject>Drying</subject><subject>Emmagatzematge i transport de l'energia</subject><subject>Energies</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>HTPEM</subject><subject>Humidification</subject><subject>Hydrogen</subject><subject>Membranes</subject><subject>Membranes (Technology)</subject><subject>Modeling</subject><subject>Outlets</subject><subject>PBI</subject><subject>PEMFCs</subject><subject>Permeability</subject><subject>Piles de combustible</subject><subject>Polybenzimidazoles</subject><subject>Power generation control</subject><subject>Proton exchange membrane fuel cells</subject><subject>Tecnologia energètica</subject><subject>Transport</subject><subject>Water transport</subject><subject>Àrees temàtiques de la UPC</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkUuLFDEUhYMo2I7-BclGcFM1eVUeO2VwdGDAzYjLkEpuTaetR5ukxP73puhWl7MIl8D9zr3nHoTeUtJSQuX1oY2H_SnADC0jVLREtFTLZ2hHtTINF1o9RzvCJWk4NeYlepXzgRCqiDA79PDdFUi4JDfn45IKzmUNJxxn7PA-Pu5xgekIyZU1AT6mpSwzht9-7-ZHwBNMfQUBDyuM2MM4Vtz5H6_Ri8GNGd5c6hX6dvvp4eZLc__1893Nx_vGd7wrjRBdb5QIRgXBZM-1DLL3QRvQTveaaUk1GDV45hjh_cC174J0oXOUaDkQfoXoWdfn1dsEHpJ3xS4u_v9sjxHFLKv6Ulfm_ZmpZn6ukIudYt5Wrz6WNVsqFZWEKcKfbu06I4WidFOVl03SknOCwR5TnFw6WUrslpI92L8p2S0lS4StKVXw3WWGy96NQz2nj_kfzXTHNOGb1Q_nPqj3_BUh2ewjzB5CrFaLDUt8atQf58erZw</recordid><startdate>20140703</startdate><enddate>20140703</enddate><creator>Bezmalinović, Dario</creator><creator>Strahl, Stephan</creator><creator>Roda, Vicente</creator><creator>Husar, Attila</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>XX2</scope></search><sort><creationdate>20140703</creationdate><title>Water transport study in a high temperature proton exchange membrane fuel cell stack</title><author>Bezmalinović, Dario ; Strahl, Stephan ; Roda, Vicente ; Husar, Attila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-445b974d97d426b386d6bcd89e8a8b828618e97fc2a203bf38c5d6ad5a1086f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Cathodes</topic><topic>Coefficients</topic><topic>Control electrònic</topic><topic>Drying</topic><topic>Emmagatzematge i transport de l'energia</topic><topic>Energies</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>HTPEM</topic><topic>Humidification</topic><topic>Hydrogen</topic><topic>Membranes</topic><topic>Membranes (Technology)</topic><topic>Modeling</topic><topic>Outlets</topic><topic>PBI</topic><topic>PEMFCs</topic><topic>Permeability</topic><topic>Piles de combustible</topic><topic>Polybenzimidazoles</topic><topic>Power generation control</topic><topic>Proton exchange membrane fuel cells</topic><topic>Tecnologia energètica</topic><topic>Transport</topic><topic>Water transport</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezmalinović, Dario</creatorcontrib><creatorcontrib>Strahl, Stephan</creatorcontrib><creatorcontrib>Roda, Vicente</creatorcontrib><creatorcontrib>Husar, Attila</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezmalinović, Dario</au><au>Strahl, Stephan</au><au>Roda, Vicente</au><au>Husar, Attila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water transport study in a high temperature proton exchange membrane fuel cell stack</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2014-07-03</date><risdate>2014</risdate><volume>39</volume><issue>20</issue><spage>10627</spage><epage>10640</epage><pages>10627-10640</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>A study of water transport in a high temperature phosphoric acid doped polybenzimidazole (PBI) membrane fuel cell stack is reported. Tests with different stoichiometries of dry cathode and different humidity levels of anode are performed. It is found that water transport across the membrane electrode assembly (MEA) is noteworthy and that water vapor partial pressure on the anode outlet is almost always higher than on the cathode outlet, even when using dry hydrogen. The water transport is a strong function of current density but it also depends on stoichiometry and humidity level. In a series of tests with dry nitrogen on one side and humid nitrogen on the other side, the membrane's water permeability coefficient is determined to be 2.4 × 10−13 mol s−1 cm−1 Pa−1 at 160 °C which is more than an order of magnitude higher than the values previously reported in the literature. Also, the results indicate that the permeability coefficient might be relative humidity dependent and could even be somewhat higher than the value reported here, but further investigation is needed. The experimental findings are reproduced and explained with a 2D steady state computational fluid dynamics (CFD) model. Internal water transport profiles across the membrane and along the gas flow channels are presented and discussed.
•Water transport in a 12 cell PBI-based HTPEM fuel cell stack is investigated.•Even with dry gases up to 10% of water leaves the stack through the anode outlet.•Water transport from cathode to anode rises with current density.•Anode outlet water concentration is almost always higher than on the cathode.•Membrane water permeability is determined to be 2.4 × 10−13 mol s−1 cm−1 Pa−1 at 160 °C.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2014.04.186</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2014-07, Vol.39 (20), p.10627-10640 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_238668 |
source | Recercat; Elsevier ScienceDirect Journals |
subjects | Alternative fuels. Production and utilization Applied sciences Cathodes Coefficients Control electrònic Drying Emmagatzematge i transport de l'energia Energies Energy Exact sciences and technology Fuels HTPEM Humidification Hydrogen Membranes Membranes (Technology) Modeling Outlets PBI PEMFCs Permeability Piles de combustible Polybenzimidazoles Power generation control Proton exchange membrane fuel cells Tecnologia energètica Transport Water transport Àrees temàtiques de la UPC |
title | Water transport study in a high temperature proton exchange membrane fuel cell stack |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20transport%20study%20in%20a%20high%20temperature%20proton%20exchange%20membrane%20fuel%20cell%20stack&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Bezmalinovi%C4%87,%20Dario&rft.date=2014-07-03&rft.volume=39&rft.issue=20&rft.spage=10627&rft.epage=10640&rft.pages=10627-10640&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2014.04.186&rft_dat=%3Cproquest_csuc_%3E1559647118%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559647118&rft_id=info:pmid/&rft_els_id=S0360319914012762&rfr_iscdi=true |