Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System

The work presented in this article combines experimental analysis and theoretical studies of temperature effects on the performance of an open‐cathode, self‐humidified PEM fuel cell system for the design of optimal control strategies. The experimental analysis shows the great potential of improving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2014-06, Vol.14 (3), p.466-478
Hauptverfasser: Strahl, S., Husar, A., Puleston, P., Riera, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue 3
container_start_page 466
container_title Fuel cells (Weinheim an der Bergstrasse, Germany)
container_volume 14
creator Strahl, S.
Husar, A.
Puleston, P.
Riera, J.
description The work presented in this article combines experimental analysis and theoretical studies of temperature effects on the performance of an open‐cathode, self‐humidified PEM fuel cell system for the design of optimal control strategies. The experimental analysis shows the great potential of improving the system performance by proper thermal management. The most significant temperature dependent parameter of the system under study is the exchange current density. On the one hand it is influenced positively by a temperature increase as this lowers the activation barrier. On the other hand a higher temperature causes a reduction of the electrochemical active sites in the cathode catalyst layer due to lower water content in the ionomer and primary pores. Dynamic models for fuel cell temperature, liquid water transport and the related electrochemistry have been developed and validated against the experiment. A cascaded Extremum Seeking control algorithm with a local PI controller is proposed to regulate the temperature to a fuel cell voltage maximum. However, the slow dynamics of the temperature related catalyst‐drying effect on performance complicate the optimal thermal management with model‐free control strategies.
doi_str_mv 10.1002/fuce.201300211
format Article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_238264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3336816141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4741-bef0f6455c1131e7d747d2781e36d363ec7e8813a07d33cd378e5f6a6b9c5ebd3</originalsourceid><addsrcrecordid>eNqFkM1PwkAQxRujiYhePW_iubjTbXeXo2lASZAvQb1tlu00gm0Xt63Kf28JBL15mMy85P0mM8_zroF2gNLgNq0NdgIKrBEAJ14LOEQ-l1F4epxDfu5dlOWaUhBShi3veYIutS7XhUEyyDfOfmKORUWWWzLHfINOV7VDEtuicjYjNiW6IOMNFn6sqzebIJn0Hkm_xozEmGXkaVtWmF96Z6nOSrw69La36Pfm8YM_HN8P4ruhb0IRgr_ElKY8jCIDwABFIkKRBEICMp4wztAIlBKYpiJhzCRMSIxSrvmyayJcJqztwX6vKWujHBp0RlfK6tWv2FVARaACJgMeNszNnmme_aixrNTa1q5ozlQQMc4l73Zl4-ocNjtblg5TtXGrXLutAqp2eatd3uqYdwN098DXKsPtP27VX8S9v6y_Z1dNeN9HVrt3xQUTkXoZ3asR0OFsOntVU_YD6uuSjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1536686998</pqid></control><display><type>article</type><title>Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System</title><source>Access via Wiley Online Library</source><source>Recercat</source><creator>Strahl, S. ; Husar, A. ; Puleston, P. ; Riera, J.</creator><creatorcontrib>Strahl, S. ; Husar, A. ; Puleston, P. ; Riera, J.</creatorcontrib><description>The work presented in this article combines experimental analysis and theoretical studies of temperature effects on the performance of an open‐cathode, self‐humidified PEM fuel cell system for the design of optimal control strategies. The experimental analysis shows the great potential of improving the system performance by proper thermal management. The most significant temperature dependent parameter of the system under study is the exchange current density. On the one hand it is influenced positively by a temperature increase as this lowers the activation barrier. On the other hand a higher temperature causes a reduction of the electrochemical active sites in the cathode catalyst layer due to lower water content in the ionomer and primary pores. Dynamic models for fuel cell temperature, liquid water transport and the related electrochemistry have been developed and validated against the experiment. A cascaded Extremum Seeking control algorithm with a local PI controller is proposed to regulate the temperature to a fuel cell voltage maximum. However, the slow dynamics of the temperature related catalyst‐drying effect on performance complicate the optimal thermal management with model‐free control strategies.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201300211</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Automàtica i control ; CATALYST LAYERS ; Catalyst Performance Modeling ; Control ; Electric power systems ; Extremum Seeki#ng Control ; Extremum Seeking Control ; Fuel cells ; Informàtica ; Open-Cathode ; PEMFC ; Polymer electrolyte membrane fuel cell ; Sistemes elèctrics de potència ; STACK ; Temperature Experiments ; TRANSPORT ; Àrees temàtiques de la UPC</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2014-06, Vol.14 (3), p.466-478</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4741-bef0f6455c1131e7d747d2781e36d363ec7e8813a07d33cd378e5f6a6b9c5ebd3</citedby><cites>FETCH-LOGICAL-c4741-bef0f6455c1131e7d747d2781e36d363ec7e8813a07d33cd378e5f6a6b9c5ebd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffuce.201300211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffuce.201300211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,26974,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Strahl, S.</creatorcontrib><creatorcontrib>Husar, A.</creatorcontrib><creatorcontrib>Puleston, P.</creatorcontrib><creatorcontrib>Riera, J.</creatorcontrib><title>Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><addtitle>Fuel Cells</addtitle><description>The work presented in this article combines experimental analysis and theoretical studies of temperature effects on the performance of an open‐cathode, self‐humidified PEM fuel cell system for the design of optimal control strategies. The experimental analysis shows the great potential of improving the system performance by proper thermal management. The most significant temperature dependent parameter of the system under study is the exchange current density. On the one hand it is influenced positively by a temperature increase as this lowers the activation barrier. On the other hand a higher temperature causes a reduction of the electrochemical active sites in the cathode catalyst layer due to lower water content in the ionomer and primary pores. Dynamic models for fuel cell temperature, liquid water transport and the related electrochemistry have been developed and validated against the experiment. A cascaded Extremum Seeking control algorithm with a local PI controller is proposed to regulate the temperature to a fuel cell voltage maximum. However, the slow dynamics of the temperature related catalyst‐drying effect on performance complicate the optimal thermal management with model‐free control strategies.</description><subject>Automàtica i control</subject><subject>CATALYST LAYERS</subject><subject>Catalyst Performance Modeling</subject><subject>Control</subject><subject>Electric power systems</subject><subject>Extremum Seeki#ng Control</subject><subject>Extremum Seeking Control</subject><subject>Fuel cells</subject><subject>Informàtica</subject><subject>Open-Cathode</subject><subject>PEMFC</subject><subject>Polymer electrolyte membrane fuel cell</subject><subject>Sistemes elèctrics de potència</subject><subject>STACK</subject><subject>Temperature Experiments</subject><subject>TRANSPORT</subject><subject>Àrees temàtiques de la UPC</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkM1PwkAQxRujiYhePW_iubjTbXeXo2lASZAvQb1tlu00gm0Xt63Kf28JBL15mMy85P0mM8_zroF2gNLgNq0NdgIKrBEAJ14LOEQ-l1F4epxDfu5dlOWaUhBShi3veYIutS7XhUEyyDfOfmKORUWWWzLHfINOV7VDEtuicjYjNiW6IOMNFn6sqzebIJn0Hkm_xozEmGXkaVtWmF96Z6nOSrw69La36Pfm8YM_HN8P4ruhb0IRgr_ElKY8jCIDwABFIkKRBEICMp4wztAIlBKYpiJhzCRMSIxSrvmyayJcJqztwX6vKWujHBp0RlfK6tWv2FVARaACJgMeNszNnmme_aixrNTa1q5ozlQQMc4l73Zl4-ocNjtblg5TtXGrXLutAqp2eatd3uqYdwN098DXKsPtP27VX8S9v6y_Z1dNeN9HVrt3xQUTkXoZ3asR0OFsOntVU_YD6uuSjQ</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Strahl, S.</creator><creator>Husar, A.</creator><creator>Puleston, P.</creator><creator>Riera, J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>XX2</scope></search><sort><creationdate>201406</creationdate><title>Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System</title><author>Strahl, S. ; Husar, A. ; Puleston, P. ; Riera, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4741-bef0f6455c1131e7d747d2781e36d363ec7e8813a07d33cd378e5f6a6b9c5ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automàtica i control</topic><topic>CATALYST LAYERS</topic><topic>Catalyst Performance Modeling</topic><topic>Control</topic><topic>Electric power systems</topic><topic>Extremum Seeki#ng Control</topic><topic>Extremum Seeking Control</topic><topic>Fuel cells</topic><topic>Informàtica</topic><topic>Open-Cathode</topic><topic>PEMFC</topic><topic>Polymer electrolyte membrane fuel cell</topic><topic>Sistemes elèctrics de potència</topic><topic>STACK</topic><topic>Temperature Experiments</topic><topic>TRANSPORT</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strahl, S.</creatorcontrib><creatorcontrib>Husar, A.</creatorcontrib><creatorcontrib>Puleston, P.</creatorcontrib><creatorcontrib>Riera, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strahl, S.</au><au>Husar, A.</au><au>Puleston, P.</au><au>Riera, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Fuel Cells</addtitle><date>2014-06</date><risdate>2014</risdate><volume>14</volume><issue>3</issue><spage>466</spage><epage>478</epage><pages>466-478</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>The work presented in this article combines experimental analysis and theoretical studies of temperature effects on the performance of an open‐cathode, self‐humidified PEM fuel cell system for the design of optimal control strategies. The experimental analysis shows the great potential of improving the system performance by proper thermal management. The most significant temperature dependent parameter of the system under study is the exchange current density. On the one hand it is influenced positively by a temperature increase as this lowers the activation barrier. On the other hand a higher temperature causes a reduction of the electrochemical active sites in the cathode catalyst layer due to lower water content in the ionomer and primary pores. Dynamic models for fuel cell temperature, liquid water transport and the related electrochemistry have been developed and validated against the experiment. A cascaded Extremum Seeking control algorithm with a local PI controller is proposed to regulate the temperature to a fuel cell voltage maximum. However, the slow dynamics of the temperature related catalyst‐drying effect on performance complicate the optimal thermal management with model‐free control strategies.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/fuce.201300211</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1615-6846
ispartof Fuel cells (Weinheim an der Bergstrasse, Germany), 2014-06, Vol.14 (3), p.466-478
issn 1615-6846
1615-6854
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_238264
source Access via Wiley Online Library; Recercat
subjects Automàtica i control
CATALYST LAYERS
Catalyst Performance Modeling
Control
Electric power systems
Extremum Seeki#ng Control
Extremum Seeking Control
Fuel cells
Informàtica
Open-Cathode
PEMFC
Polymer electrolyte membrane fuel cell
Sistemes elèctrics de potència
STACK
Temperature Experiments
TRANSPORT
Àrees temàtiques de la UPC
title Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Improvement%20by%20Temperature%20Control%20of%20an%20Open-Cathode%20PEM%20Fuel%20Cell%20System&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Strahl,%20S.&rft.date=2014-06&rft.volume=14&rft.issue=3&rft.spage=466&rft.epage=478&rft.pages=466-478&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201300211&rft_dat=%3Cproquest_csuc_%3E3336816141%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1536686998&rft_id=info:pmid/&rfr_iscdi=true