Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System
The work presented in this article combines experimental analysis and theoretical studies of temperature effects on the performance of an open‐cathode, self‐humidified PEM fuel cell system for the design of optimal control strategies. The experimental analysis shows the great potential of improving...
Gespeichert in:
Veröffentlicht in: | Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2014-06, Vol.14 (3), p.466-478 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 478 |
---|---|
container_issue | 3 |
container_start_page | 466 |
container_title | Fuel cells (Weinheim an der Bergstrasse, Germany) |
container_volume | 14 |
creator | Strahl, S. Husar, A. Puleston, P. Riera, J. |
description | The work presented in this article combines experimental analysis and theoretical studies of temperature effects on the performance of an open‐cathode, self‐humidified PEM fuel cell system for the design of optimal control strategies. The experimental analysis shows the great potential of improving the system performance by proper thermal management. The most significant temperature dependent parameter of the system under study is the exchange current density. On the one hand it is influenced positively by a temperature increase as this lowers the activation barrier. On the other hand a higher temperature causes a reduction of the electrochemical active sites in the cathode catalyst layer due to lower water content in the ionomer and primary pores. Dynamic models for fuel cell temperature, liquid water transport and the related electrochemistry have been developed and validated against the experiment. A cascaded Extremum Seeking control algorithm with a local PI controller is proposed to regulate the temperature to a fuel cell voltage maximum. However, the slow dynamics of the temperature related catalyst‐drying effect on performance complicate the optimal thermal management with model‐free control strategies. |
doi_str_mv | 10.1002/fuce.201300211 |
format | Article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_238264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3336816141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4741-bef0f6455c1131e7d747d2781e36d363ec7e8813a07d33cd378e5f6a6b9c5ebd3</originalsourceid><addsrcrecordid>eNqFkM1PwkAQxRujiYhePW_iubjTbXeXo2lASZAvQb1tlu00gm0Xt63Kf28JBL15mMy85P0mM8_zroF2gNLgNq0NdgIKrBEAJ14LOEQ-l1F4epxDfu5dlOWaUhBShi3veYIutS7XhUEyyDfOfmKORUWWWzLHfINOV7VDEtuicjYjNiW6IOMNFn6sqzebIJn0Hkm_xozEmGXkaVtWmF96Z6nOSrw69La36Pfm8YM_HN8P4ruhb0IRgr_ElKY8jCIDwABFIkKRBEICMp4wztAIlBKYpiJhzCRMSIxSrvmyayJcJqztwX6vKWujHBp0RlfK6tWv2FVARaACJgMeNszNnmme_aixrNTa1q5ozlQQMc4l73Zl4-ocNjtblg5TtXGrXLutAqp2eatd3uqYdwN098DXKsPtP27VX8S9v6y_Z1dNeN9HVrt3xQUTkXoZ3asR0OFsOntVU_YD6uuSjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1536686998</pqid></control><display><type>article</type><title>Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System</title><source>Access via Wiley Online Library</source><source>Recercat</source><creator>Strahl, S. ; Husar, A. ; Puleston, P. ; Riera, J.</creator><creatorcontrib>Strahl, S. ; Husar, A. ; Puleston, P. ; Riera, J.</creatorcontrib><description>The work presented in this article combines experimental analysis and theoretical studies of temperature effects on the performance of an open‐cathode, self‐humidified PEM fuel cell system for the design of optimal control strategies. The experimental analysis shows the great potential of improving the system performance by proper thermal management. The most significant temperature dependent parameter of the system under study is the exchange current density. On the one hand it is influenced positively by a temperature increase as this lowers the activation barrier. On the other hand a higher temperature causes a reduction of the electrochemical active sites in the cathode catalyst layer due to lower water content in the ionomer and primary pores. Dynamic models for fuel cell temperature, liquid water transport and the related electrochemistry have been developed and validated against the experiment. A cascaded Extremum Seeking control algorithm with a local PI controller is proposed to regulate the temperature to a fuel cell voltage maximum. However, the slow dynamics of the temperature related catalyst‐drying effect on performance complicate the optimal thermal management with model‐free control strategies.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201300211</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Automàtica i control ; CATALYST LAYERS ; Catalyst Performance Modeling ; Control ; Electric power systems ; Extremum Seeki#ng Control ; Extremum Seeking Control ; Fuel cells ; Informàtica ; Open-Cathode ; PEMFC ; Polymer electrolyte membrane fuel cell ; Sistemes elèctrics de potència ; STACK ; Temperature Experiments ; TRANSPORT ; Àrees temàtiques de la UPC</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2014-06, Vol.14 (3), p.466-478</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4741-bef0f6455c1131e7d747d2781e36d363ec7e8813a07d33cd378e5f6a6b9c5ebd3</citedby><cites>FETCH-LOGICAL-c4741-bef0f6455c1131e7d747d2781e36d363ec7e8813a07d33cd378e5f6a6b9c5ebd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffuce.201300211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffuce.201300211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,26974,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Strahl, S.</creatorcontrib><creatorcontrib>Husar, A.</creatorcontrib><creatorcontrib>Puleston, P.</creatorcontrib><creatorcontrib>Riera, J.</creatorcontrib><title>Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><addtitle>Fuel Cells</addtitle><description>The work presented in this article combines experimental analysis and theoretical studies of temperature effects on the performance of an open‐cathode, self‐humidified PEM fuel cell system for the design of optimal control strategies. The experimental analysis shows the great potential of improving the system performance by proper thermal management. The most significant temperature dependent parameter of the system under study is the exchange current density. On the one hand it is influenced positively by a temperature increase as this lowers the activation barrier. On the other hand a higher temperature causes a reduction of the electrochemical active sites in the cathode catalyst layer due to lower water content in the ionomer and primary pores. Dynamic models for fuel cell temperature, liquid water transport and the related electrochemistry have been developed and validated against the experiment. A cascaded Extremum Seeking control algorithm with a local PI controller is proposed to regulate the temperature to a fuel cell voltage maximum. However, the slow dynamics of the temperature related catalyst‐drying effect on performance complicate the optimal thermal management with model‐free control strategies.</description><subject>Automàtica i control</subject><subject>CATALYST LAYERS</subject><subject>Catalyst Performance Modeling</subject><subject>Control</subject><subject>Electric power systems</subject><subject>Extremum Seeki#ng Control</subject><subject>Extremum Seeking Control</subject><subject>Fuel cells</subject><subject>Informàtica</subject><subject>Open-Cathode</subject><subject>PEMFC</subject><subject>Polymer electrolyte membrane fuel cell</subject><subject>Sistemes elèctrics de potència</subject><subject>STACK</subject><subject>Temperature Experiments</subject><subject>TRANSPORT</subject><subject>Àrees temàtiques de la UPC</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkM1PwkAQxRujiYhePW_iubjTbXeXo2lASZAvQb1tlu00gm0Xt63Kf28JBL15mMy85P0mM8_zroF2gNLgNq0NdgIKrBEAJ14LOEQ-l1F4epxDfu5dlOWaUhBShi3veYIutS7XhUEyyDfOfmKORUWWWzLHfINOV7VDEtuicjYjNiW6IOMNFn6sqzebIJn0Hkm_xozEmGXkaVtWmF96Z6nOSrw69La36Pfm8YM_HN8P4ruhb0IRgr_ElKY8jCIDwABFIkKRBEICMp4wztAIlBKYpiJhzCRMSIxSrvmyayJcJqztwX6vKWujHBp0RlfK6tWv2FVARaACJgMeNszNnmme_aixrNTa1q5ozlQQMc4l73Zl4-ocNjtblg5TtXGrXLutAqp2eatd3uqYdwN098DXKsPtP27VX8S9v6y_Z1dNeN9HVrt3xQUTkXoZ3asR0OFsOntVU_YD6uuSjQ</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Strahl, S.</creator><creator>Husar, A.</creator><creator>Puleston, P.</creator><creator>Riera, J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>XX2</scope></search><sort><creationdate>201406</creationdate><title>Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System</title><author>Strahl, S. ; Husar, A. ; Puleston, P. ; Riera, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4741-bef0f6455c1131e7d747d2781e36d363ec7e8813a07d33cd378e5f6a6b9c5ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automàtica i control</topic><topic>CATALYST LAYERS</topic><topic>Catalyst Performance Modeling</topic><topic>Control</topic><topic>Electric power systems</topic><topic>Extremum Seeki#ng Control</topic><topic>Extremum Seeking Control</topic><topic>Fuel cells</topic><topic>Informàtica</topic><topic>Open-Cathode</topic><topic>PEMFC</topic><topic>Polymer electrolyte membrane fuel cell</topic><topic>Sistemes elèctrics de potència</topic><topic>STACK</topic><topic>Temperature Experiments</topic><topic>TRANSPORT</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strahl, S.</creatorcontrib><creatorcontrib>Husar, A.</creatorcontrib><creatorcontrib>Puleston, P.</creatorcontrib><creatorcontrib>Riera, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strahl, S.</au><au>Husar, A.</au><au>Puleston, P.</au><au>Riera, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Fuel Cells</addtitle><date>2014-06</date><risdate>2014</risdate><volume>14</volume><issue>3</issue><spage>466</spage><epage>478</epage><pages>466-478</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>The work presented in this article combines experimental analysis and theoretical studies of temperature effects on the performance of an open‐cathode, self‐humidified PEM fuel cell system for the design of optimal control strategies. The experimental analysis shows the great potential of improving the system performance by proper thermal management. The most significant temperature dependent parameter of the system under study is the exchange current density. On the one hand it is influenced positively by a temperature increase as this lowers the activation barrier. On the other hand a higher temperature causes a reduction of the electrochemical active sites in the cathode catalyst layer due to lower water content in the ionomer and primary pores. Dynamic models for fuel cell temperature, liquid water transport and the related electrochemistry have been developed and validated against the experiment. A cascaded Extremum Seeking control algorithm with a local PI controller is proposed to regulate the temperature to a fuel cell voltage maximum. However, the slow dynamics of the temperature related catalyst‐drying effect on performance complicate the optimal thermal management with model‐free control strategies.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/fuce.201300211</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-6846 |
ispartof | Fuel cells (Weinheim an der Bergstrasse, Germany), 2014-06, Vol.14 (3), p.466-478 |
issn | 1615-6846 1615-6854 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_238264 |
source | Access via Wiley Online Library; Recercat |
subjects | Automàtica i control CATALYST LAYERS Catalyst Performance Modeling Control Electric power systems Extremum Seeki#ng Control Extremum Seeking Control Fuel cells Informàtica Open-Cathode PEMFC Polymer electrolyte membrane fuel cell Sistemes elèctrics de potència STACK Temperature Experiments TRANSPORT Àrees temàtiques de la UPC |
title | Performance Improvement by Temperature Control of an Open-Cathode PEM Fuel Cell System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Improvement%20by%20Temperature%20Control%20of%20an%20Open-Cathode%20PEM%20Fuel%20Cell%20System&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Strahl,%20S.&rft.date=2014-06&rft.volume=14&rft.issue=3&rft.spage=466&rft.epage=478&rft.pages=466-478&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201300211&rft_dat=%3Cproquest_csuc_%3E3336816141%3C/proquest_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1536686998&rft_id=info:pmid/&rfr_iscdi=true |