Thomason cohomology of categories

We investigate cohomology and homology theories of categories with general coefficients given by functors on simplex categories first studied by Thomason. These generalize Baues–Wirsching cohomology and homology of a small category, and coincide with Gabriel–Zisman cohomology and homology of the sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pure and applied algebra 2013-11, Vol.217 (11), p.2163-2179
Hauptverfasser: Gálvez-Carrillo, Imma, Neumann, Frank, Tonks, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2179
container_issue 11
container_start_page 2163
container_title Journal of pure and applied algebra
container_volume 217
creator Gálvez-Carrillo, Imma
Neumann, Frank
Tonks, Andrew
description We investigate cohomology and homology theories of categories with general coefficients given by functors on simplex categories first studied by Thomason. These generalize Baues–Wirsching cohomology and homology of a small category, and coincide with Gabriel–Zisman cohomology and homology of the simplicial nerve of the category. Thus Baues–Wirsching cohomology of categories is seen to be a special case of simplicial cohomology. We analyze naturality and functoriality properties of these theories and construct associated spectral sequences for functors between small categories.
doi_str_mv 10.1016/j.jpaa.2013.02.005
format Article
fullrecord <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_211769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022404913000364</els_id><sourcerecordid>oai_recercat_cat_2072_211769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-4c83b4ecd1d0b33d78ca4b920d5f9fc2a73370fb4853a7e8873f93889f8c2f1f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFP9AbtOPrrJghcpfkHBSz0P2dmkZmmbklTBf2-WFrx5GGYG5pl552XslkPNgTf3Qz3sra0FcFmDqAHmZ2zCjZYVl7o5ZxMAISoFqr1kVzkPAGVSNRN2t_qMW5vjbkaxVHET1z-z6GdkD24dU3D5ml14u8nu5pSn7OP5abV4rZbvL2-Lx2VF0jSHSpGRnXLU8x46KXttyKquFdDPfetJWC2lBt8pM5dWO1O0-VYa03pDwnMvp4wf91L-IkyOXCoiMNrw14whQAsUnOumLYw4MSnmnJzHfQpbm36QA47G4ICjMTgagyCwGFOghyPkyjffwSXMFNyOXB_KoQP2MfyH_wJbgmsk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thomason cohomology of categories</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gálvez-Carrillo, Imma ; Neumann, Frank ; Tonks, Andrew</creator><creatorcontrib>Gálvez-Carrillo, Imma ; Neumann, Frank ; Tonks, Andrew</creatorcontrib><description>We investigate cohomology and homology theories of categories with general coefficients given by functors on simplex categories first studied by Thomason. These generalize Baues–Wirsching cohomology and homology of a small category, and coincide with Gabriel–Zisman cohomology and homology of the simplicial nerve of the category. Thus Baues–Wirsching cohomology of categories is seen to be a special case of simplicial cohomology. We analyze naturality and functoriality properties of these theories and construct associated spectral sequences for functors between small categories.</description><identifier>ISSN: 0022-4049</identifier><identifier>EISSN: 1873-1376</identifier><identifier>DOI: 10.1016/j.jpaa.2013.02.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>18 Category theory; homological algebra ; 18D Categories with structure ; 18G Homological algebra ; 55 Algebraic topology ; 55U Applied homological algebra and category theory ; Algebra, Homological ; Classificació AMS ; Homologia ; Homology theory ; K-teoria ; K-theory ; Matemàtiques i estadística ; Teoria de categories; àlgebra homològica ; Àlgebra ; Àlgebra homològica ; Àrees temàtiques de la UPC</subject><ispartof>Journal of pure and applied algebra, 2013-11, Vol.217 (11), p.2163-2179</ispartof><rights>2013 Elsevier B.V.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-4c83b4ecd1d0b33d78ca4b920d5f9fc2a73370fb4853a7e8873f93889f8c2f1f3</citedby><cites>FETCH-LOGICAL-c386t-4c83b4ecd1d0b33d78ca4b920d5f9fc2a73370fb4853a7e8873f93889f8c2f1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022404913000364$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gálvez-Carrillo, Imma</creatorcontrib><creatorcontrib>Neumann, Frank</creatorcontrib><creatorcontrib>Tonks, Andrew</creatorcontrib><title>Thomason cohomology of categories</title><title>Journal of pure and applied algebra</title><description>We investigate cohomology and homology theories of categories with general coefficients given by functors on simplex categories first studied by Thomason. These generalize Baues–Wirsching cohomology and homology of a small category, and coincide with Gabriel–Zisman cohomology and homology of the simplicial nerve of the category. Thus Baues–Wirsching cohomology of categories is seen to be a special case of simplicial cohomology. We analyze naturality and functoriality properties of these theories and construct associated spectral sequences for functors between small categories.</description><subject>18 Category theory; homological algebra</subject><subject>18D Categories with structure</subject><subject>18G Homological algebra</subject><subject>55 Algebraic topology</subject><subject>55U Applied homological algebra and category theory</subject><subject>Algebra, Homological</subject><subject>Classificació AMS</subject><subject>Homologia</subject><subject>Homology theory</subject><subject>K-teoria</subject><subject>K-theory</subject><subject>Matemàtiques i estadística</subject><subject>Teoria de categories; àlgebra homològica</subject><subject>Àlgebra</subject><subject>Àlgebra homològica</subject><subject>Àrees temàtiques de la UPC</subject><issn>0022-4049</issn><issn>1873-1376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFP9AbtOPrrJghcpfkHBSz0P2dmkZmmbklTBf2-WFrx5GGYG5pl552XslkPNgTf3Qz3sra0FcFmDqAHmZ2zCjZYVl7o5ZxMAISoFqr1kVzkPAGVSNRN2t_qMW5vjbkaxVHET1z-z6GdkD24dU3D5ml14u8nu5pSn7OP5abV4rZbvL2-Lx2VF0jSHSpGRnXLU8x46KXttyKquFdDPfetJWC2lBt8pM5dWO1O0-VYa03pDwnMvp4wf91L-IkyOXCoiMNrw14whQAsUnOumLYw4MSnmnJzHfQpbm36QA47G4ICjMTgagyCwGFOghyPkyjffwSXMFNyOXB_KoQP2MfyH_wJbgmsk</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Gálvez-Carrillo, Imma</creator><creator>Neumann, Frank</creator><creator>Tonks, Andrew</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20131101</creationdate><title>Thomason cohomology of categories</title><author>Gálvez-Carrillo, Imma ; Neumann, Frank ; Tonks, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-4c83b4ecd1d0b33d78ca4b920d5f9fc2a73370fb4853a7e8873f93889f8c2f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>18 Category theory; homological algebra</topic><topic>18D Categories with structure</topic><topic>18G Homological algebra</topic><topic>55 Algebraic topology</topic><topic>55U Applied homological algebra and category theory</topic><topic>Algebra, Homological</topic><topic>Classificació AMS</topic><topic>Homologia</topic><topic>Homology theory</topic><topic>K-teoria</topic><topic>K-theory</topic><topic>Matemàtiques i estadística</topic><topic>Teoria de categories; àlgebra homològica</topic><topic>Àlgebra</topic><topic>Àlgebra homològica</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gálvez-Carrillo, Imma</creatorcontrib><creatorcontrib>Neumann, Frank</creatorcontrib><creatorcontrib>Tonks, Andrew</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Journal of pure and applied algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gálvez-Carrillo, Imma</au><au>Neumann, Frank</au><au>Tonks, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thomason cohomology of categories</atitle><jtitle>Journal of pure and applied algebra</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>217</volume><issue>11</issue><spage>2163</spage><epage>2179</epage><pages>2163-2179</pages><issn>0022-4049</issn><eissn>1873-1376</eissn><abstract>We investigate cohomology and homology theories of categories with general coefficients given by functors on simplex categories first studied by Thomason. These generalize Baues–Wirsching cohomology and homology of a small category, and coincide with Gabriel–Zisman cohomology and homology of the simplicial nerve of the category. Thus Baues–Wirsching cohomology of categories is seen to be a special case of simplicial cohomology. We analyze naturality and functoriality properties of these theories and construct associated spectral sequences for functors between small categories.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jpaa.2013.02.005</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4049
ispartof Journal of pure and applied algebra, 2013-11, Vol.217 (11), p.2163-2179
issn 0022-4049
1873-1376
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_211769
source Recercat; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 18 Category theory
homological algebra
18D Categories with structure
18G Homological algebra
55 Algebraic topology
55U Applied homological algebra and category theory
Algebra, Homological
Classificació AMS
Homologia
Homology theory
K-teoria
K-theory
Matemàtiques i estadística
Teoria de categories
àlgebra homològica
Àlgebra
Àlgebra homològica
Àrees temàtiques de la UPC
title Thomason cohomology of categories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A52%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thomason%20cohomology%20of%20categories&rft.jtitle=Journal%20of%20pure%20and%20applied%20algebra&rft.au=G%C3%A1lvez-Carrillo,%20Imma&rft.date=2013-11-01&rft.volume=217&rft.issue=11&rft.spage=2163&rft.epage=2179&rft.pages=2163-2179&rft.issn=0022-4049&rft.eissn=1873-1376&rft_id=info:doi/10.1016/j.jpaa.2013.02.005&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_211769%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022404913000364&rfr_iscdi=true