Frobenius and Cartier algebras of Stanley–Reisner rings

We study the generation of the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a counterexample to a question raised by G. Lyubeznik and K.E. Smith about the finite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 2012-05, Vol.358, p.162-177
Hauptverfasser: Àlvarez Montaner, Josep, Boix, Alberto F., Zarzuela, Santiago
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue
container_start_page 162
container_title Journal of algebra
container_volume 358
creator Àlvarez Montaner, Josep
Boix, Alberto F.
Zarzuela, Santiago
description We study the generation of the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a counterexample to a question raised by G. Lyubeznik and K.E. Smith about the finite generation of Frobenius algebras, we prove that the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring can be only principally generated or infinitely generated. Also, by using our explicit description of the generators of such algebra and applying the recent work by M. Blickle about Cartier algebras and generalized test ideals, we are able to show that the set of F-jumping numbers of generalized test ideals associated to complete Stanley–Reisner rings form a discrete subset inside the non-negative real numbers.
doi_str_mv 10.1016/j.jalgebra.2012.03.006
format Article
fullrecord <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_200932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869312001378</els_id><sourcerecordid>oai_recercat_cat_2072_200932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-571e380f6f3e0fd46af91151c1cf6c4f4dc7f245938f61ec702153995b8217a73</originalsourceid><addsrcrecordid>eNqFkNtKxDAQhoMouB5eQfoCrTNJmzZ3yuKqsCB4AO9CNp0sKWsrSVfYO9_BN_RJzLIrXnoxMwzD_8_Mx9gFQoGA8rIrOrNa0iKYggPyAkQBIA_YBEFBzqV8PWQTAI55I5U4ZicxdgCIVdlMmJqFYUG9X8fM9G02NWH0FLK9YcwGlz2Npl_R5vvz65F87NM0-H4Zz9iRM6tI5_t6yl5mN8_Tu3z-cHs_vZ7ntgQ-5lWNJBpw0gkC15bSOJV2o0XrpC1d2dra8bJSonESydbp0EooVS0ajrWpxSnDna-Na6sDWQrWjHow_q_ZBoeapwRK8KSRe00YYgzk9HvwbyZsNILeQtOd_oWmt9A0CJ2gJeHVTkjpo49EQkfrqbfU-rRs1O3g_7P4ATtZeNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Frobenius and Cartier algebras of Stanley–Reisner rings</title><source>Elsevier ScienceDirect Journals Complete</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Àlvarez Montaner, Josep ; Boix, Alberto F. ; Zarzuela, Santiago</creator><creatorcontrib>Àlvarez Montaner, Josep ; Boix, Alberto F. ; Zarzuela, Santiago</creatorcontrib><description>We study the generation of the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a counterexample to a question raised by G. Lyubeznik and K.E. Smith about the finite generation of Frobenius algebras, we prove that the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring can be only principally generated or infinitely generated. Also, by using our explicit description of the generators of such algebra and applying the recent work by M. Blickle about Cartier algebras and generalized test ideals, we are able to show that the set of F-jumping numbers of generalized test ideals associated to complete Stanley–Reisner rings form a discrete subset inside the non-negative real numbers.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1016/j.jalgebra.2012.03.006</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cartier algebras ; Frobenius algebras ; Frobenius, Àlgebra de ; Matemàtiques i estadística ; Stanley-Reisner rings ; Àlgebra ; Àrees temàtiques de la UPC</subject><ispartof>Journal of algebra, 2012-05, Vol.358, p.162-177</ispartof><rights>2012 Elsevier Inc.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-571e380f6f3e0fd46af91151c1cf6c4f4dc7f245938f61ec702153995b8217a73</citedby><cites>FETCH-LOGICAL-c402t-571e380f6f3e0fd46af91151c1cf6c4f4dc7f245938f61ec702153995b8217a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jalgebra.2012.03.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,26974,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Àlvarez Montaner, Josep</creatorcontrib><creatorcontrib>Boix, Alberto F.</creatorcontrib><creatorcontrib>Zarzuela, Santiago</creatorcontrib><title>Frobenius and Cartier algebras of Stanley–Reisner rings</title><title>Journal of algebra</title><description>We study the generation of the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a counterexample to a question raised by G. Lyubeznik and K.E. Smith about the finite generation of Frobenius algebras, we prove that the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring can be only principally generated or infinitely generated. Also, by using our explicit description of the generators of such algebra and applying the recent work by M. Blickle about Cartier algebras and generalized test ideals, we are able to show that the set of F-jumping numbers of generalized test ideals associated to complete Stanley–Reisner rings form a discrete subset inside the non-negative real numbers.</description><subject>Cartier algebras</subject><subject>Frobenius algebras</subject><subject>Frobenius, Àlgebra de</subject><subject>Matemàtiques i estadística</subject><subject>Stanley-Reisner rings</subject><subject>Àlgebra</subject><subject>Àrees temàtiques de la UPC</subject><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkNtKxDAQhoMouB5eQfoCrTNJmzZ3yuKqsCB4AO9CNp0sKWsrSVfYO9_BN_RJzLIrXnoxMwzD_8_Mx9gFQoGA8rIrOrNa0iKYggPyAkQBIA_YBEFBzqV8PWQTAI55I5U4ZicxdgCIVdlMmJqFYUG9X8fM9G02NWH0FLK9YcwGlz2Npl_R5vvz65F87NM0-H4Zz9iRM6tI5_t6yl5mN8_Tu3z-cHs_vZ7ntgQ-5lWNJBpw0gkC15bSOJV2o0XrpC1d2dra8bJSonESydbp0EooVS0ajrWpxSnDna-Na6sDWQrWjHow_q_ZBoeapwRK8KSRe00YYgzk9HvwbyZsNILeQtOd_oWmt9A0CJ2gJeHVTkjpo49EQkfrqbfU-rRs1O3g_7P4ATtZeNQ</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Àlvarez Montaner, Josep</creator><creator>Boix, Alberto F.</creator><creator>Zarzuela, Santiago</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20120515</creationdate><title>Frobenius and Cartier algebras of Stanley–Reisner rings</title><author>Àlvarez Montaner, Josep ; Boix, Alberto F. ; Zarzuela, Santiago</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-571e380f6f3e0fd46af91151c1cf6c4f4dc7f245938f61ec702153995b8217a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cartier algebras</topic><topic>Frobenius algebras</topic><topic>Frobenius, Àlgebra de</topic><topic>Matemàtiques i estadística</topic><topic>Stanley-Reisner rings</topic><topic>Àlgebra</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Àlvarez Montaner, Josep</creatorcontrib><creatorcontrib>Boix, Alberto F.</creatorcontrib><creatorcontrib>Zarzuela, Santiago</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Àlvarez Montaner, Josep</au><au>Boix, Alberto F.</au><au>Zarzuela, Santiago</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frobenius and Cartier algebras of Stanley–Reisner rings</atitle><jtitle>Journal of algebra</jtitle><date>2012-05-15</date><risdate>2012</risdate><volume>358</volume><spage>162</spage><epage>177</epage><pages>162-177</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>We study the generation of the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a counterexample to a question raised by G. Lyubeznik and K.E. Smith about the finite generation of Frobenius algebras, we prove that the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring can be only principally generated or infinitely generated. Also, by using our explicit description of the generators of such algebra and applying the recent work by M. Blickle about Cartier algebras and generalized test ideals, we are able to show that the set of F-jumping numbers of generalized test ideals associated to complete Stanley–Reisner rings form a discrete subset inside the non-negative real numbers.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jalgebra.2012.03.006</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8693
ispartof Journal of algebra, 2012-05, Vol.358, p.162-177
issn 0021-8693
1090-266X
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_200932
source Elsevier ScienceDirect Journals Complete; Recercat; EZB-FREE-00999 freely available EZB journals
subjects Cartier algebras
Frobenius algebras
Frobenius, Àlgebra de
Matemàtiques i estadística
Stanley-Reisner rings
Àlgebra
Àrees temàtiques de la UPC
title Frobenius and Cartier algebras of Stanley–Reisner rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frobenius%20and%20Cartier%20algebras%20of%20Stanley%E2%80%93Reisner%20rings&rft.jtitle=Journal%20of%20algebra&rft.au=%C3%80lvarez%20Montaner,%20Josep&rft.date=2012-05-15&rft.volume=358&rft.spage=162&rft.epage=177&rft.pages=162-177&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1016/j.jalgebra.2012.03.006&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_200932%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021869312001378&rfr_iscdi=true