Frobenius and Cartier algebras of Stanley–Reisner rings
We study the generation of the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a counterexample to a question raised by G. Lyubeznik and K.E. Smith about the finite...
Gespeichert in:
Veröffentlicht in: | Journal of algebra 2012-05, Vol.358, p.162-177 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | |
container_start_page | 162 |
container_title | Journal of algebra |
container_volume | 358 |
creator | Àlvarez Montaner, Josep Boix, Alberto F. Zarzuela, Santiago |
description | We study the generation of the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a counterexample to a question raised by G. Lyubeznik and K.E. Smith about the finite generation of Frobenius algebras, we prove that the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring can be only principally generated or infinitely generated. Also, by using our explicit description of the generators of such algebra and applying the recent work by M. Blickle about Cartier algebras and generalized test ideals, we are able to show that the set of F-jumping numbers of generalized test ideals associated to complete Stanley–Reisner rings form a discrete subset inside the non-negative real numbers. |
doi_str_mv | 10.1016/j.jalgebra.2012.03.006 |
format | Article |
fullrecord | <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_200932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021869312001378</els_id><sourcerecordid>oai_recercat_cat_2072_200932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-571e380f6f3e0fd46af91151c1cf6c4f4dc7f245938f61ec702153995b8217a73</originalsourceid><addsrcrecordid>eNqFkNtKxDAQhoMouB5eQfoCrTNJmzZ3yuKqsCB4AO9CNp0sKWsrSVfYO9_BN_RJzLIrXnoxMwzD_8_Mx9gFQoGA8rIrOrNa0iKYggPyAkQBIA_YBEFBzqV8PWQTAI55I5U4ZicxdgCIVdlMmJqFYUG9X8fM9G02NWH0FLK9YcwGlz2Npl_R5vvz65F87NM0-H4Zz9iRM6tI5_t6yl5mN8_Tu3z-cHs_vZ7ntgQ-5lWNJBpw0gkC15bSOJV2o0XrpC1d2dra8bJSonESydbp0EooVS0ajrWpxSnDna-Na6sDWQrWjHow_q_ZBoeapwRK8KSRe00YYgzk9HvwbyZsNILeQtOd_oWmt9A0CJ2gJeHVTkjpo49EQkfrqbfU-rRs1O3g_7P4ATtZeNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Frobenius and Cartier algebras of Stanley–Reisner rings</title><source>Elsevier ScienceDirect Journals Complete</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Àlvarez Montaner, Josep ; Boix, Alberto F. ; Zarzuela, Santiago</creator><creatorcontrib>Àlvarez Montaner, Josep ; Boix, Alberto F. ; Zarzuela, Santiago</creatorcontrib><description>We study the generation of the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a counterexample to a question raised by G. Lyubeznik and K.E. Smith about the finite generation of Frobenius algebras, we prove that the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring can be only principally generated or infinitely generated. Also, by using our explicit description of the generators of such algebra and applying the recent work by M. Blickle about Cartier algebras and generalized test ideals, we are able to show that the set of F-jumping numbers of generalized test ideals associated to complete Stanley–Reisner rings form a discrete subset inside the non-negative real numbers.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1016/j.jalgebra.2012.03.006</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cartier algebras ; Frobenius algebras ; Frobenius, Àlgebra de ; Matemàtiques i estadística ; Stanley-Reisner rings ; Àlgebra ; Àrees temàtiques de la UPC</subject><ispartof>Journal of algebra, 2012-05, Vol.358, p.162-177</ispartof><rights>2012 Elsevier Inc.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-571e380f6f3e0fd46af91151c1cf6c4f4dc7f245938f61ec702153995b8217a73</citedby><cites>FETCH-LOGICAL-c402t-571e380f6f3e0fd46af91151c1cf6c4f4dc7f245938f61ec702153995b8217a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jalgebra.2012.03.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,26974,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Àlvarez Montaner, Josep</creatorcontrib><creatorcontrib>Boix, Alberto F.</creatorcontrib><creatorcontrib>Zarzuela, Santiago</creatorcontrib><title>Frobenius and Cartier algebras of Stanley–Reisner rings</title><title>Journal of algebra</title><description>We study the generation of the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a counterexample to a question raised by G. Lyubeznik and K.E. Smith about the finite generation of Frobenius algebras, we prove that the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring can be only principally generated or infinitely generated. Also, by using our explicit description of the generators of such algebra and applying the recent work by M. Blickle about Cartier algebras and generalized test ideals, we are able to show that the set of F-jumping numbers of generalized test ideals associated to complete Stanley–Reisner rings form a discrete subset inside the non-negative real numbers.</description><subject>Cartier algebras</subject><subject>Frobenius algebras</subject><subject>Frobenius, Àlgebra de</subject><subject>Matemàtiques i estadística</subject><subject>Stanley-Reisner rings</subject><subject>Àlgebra</subject><subject>Àrees temàtiques de la UPC</subject><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkNtKxDAQhoMouB5eQfoCrTNJmzZ3yuKqsCB4AO9CNp0sKWsrSVfYO9_BN_RJzLIrXnoxMwzD_8_Mx9gFQoGA8rIrOrNa0iKYggPyAkQBIA_YBEFBzqV8PWQTAI55I5U4ZicxdgCIVdlMmJqFYUG9X8fM9G02NWH0FLK9YcwGlz2Npl_R5vvz65F87NM0-H4Zz9iRM6tI5_t6yl5mN8_Tu3z-cHs_vZ7ntgQ-5lWNJBpw0gkC15bSOJV2o0XrpC1d2dra8bJSonESydbp0EooVS0ajrWpxSnDna-Na6sDWQrWjHow_q_ZBoeapwRK8KSRe00YYgzk9HvwbyZsNILeQtOd_oWmt9A0CJ2gJeHVTkjpo49EQkfrqbfU-rRs1O3g_7P4ATtZeNQ</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Àlvarez Montaner, Josep</creator><creator>Boix, Alberto F.</creator><creator>Zarzuela, Santiago</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20120515</creationdate><title>Frobenius and Cartier algebras of Stanley–Reisner rings</title><author>Àlvarez Montaner, Josep ; Boix, Alberto F. ; Zarzuela, Santiago</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-571e380f6f3e0fd46af91151c1cf6c4f4dc7f245938f61ec702153995b8217a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cartier algebras</topic><topic>Frobenius algebras</topic><topic>Frobenius, Àlgebra de</topic><topic>Matemàtiques i estadística</topic><topic>Stanley-Reisner rings</topic><topic>Àlgebra</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Àlvarez Montaner, Josep</creatorcontrib><creatorcontrib>Boix, Alberto F.</creatorcontrib><creatorcontrib>Zarzuela, Santiago</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Àlvarez Montaner, Josep</au><au>Boix, Alberto F.</au><au>Zarzuela, Santiago</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frobenius and Cartier algebras of Stanley–Reisner rings</atitle><jtitle>Journal of algebra</jtitle><date>2012-05-15</date><risdate>2012</risdate><volume>358</volume><spage>162</spage><epage>177</epage><pages>162-177</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>We study the generation of the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a counterexample to a question raised by G. Lyubeznik and K.E. Smith about the finite generation of Frobenius algebras, we prove that the Frobenius algebra of the injective hull of a complete Stanley–Reisner ring can be only principally generated or infinitely generated. Also, by using our explicit description of the generators of such algebra and applying the recent work by M. Blickle about Cartier algebras and generalized test ideals, we are able to show that the set of F-jumping numbers of generalized test ideals associated to complete Stanley–Reisner rings form a discrete subset inside the non-negative real numbers.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jalgebra.2012.03.006</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8693 |
ispartof | Journal of algebra, 2012-05, Vol.358, p.162-177 |
issn | 0021-8693 1090-266X |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_200932 |
source | Elsevier ScienceDirect Journals Complete; Recercat; EZB-FREE-00999 freely available EZB journals |
subjects | Cartier algebras Frobenius algebras Frobenius, Àlgebra de Matemàtiques i estadística Stanley-Reisner rings Àlgebra Àrees temàtiques de la UPC |
title | Frobenius and Cartier algebras of Stanley–Reisner rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frobenius%20and%20Cartier%20algebras%20of%20Stanley%E2%80%93Reisner%20rings&rft.jtitle=Journal%20of%20algebra&rft.au=%C3%80lvarez%20Montaner,%20Josep&rft.date=2012-05-15&rft.volume=358&rft.spage=162&rft.epage=177&rft.pages=162-177&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1016/j.jalgebra.2012.03.006&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_200932%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021869312001378&rfr_iscdi=true |