Reduction theorems for operators on the cones of monotone functions
For a quasilinear operator on the semiaxis a reduction theorem is proved on the cones of monotone functions in Lp - Lq setting for 0 < q < ∞, 1
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Text Resource |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Gogatishvili, A Stepanov, V. D. (Vladimir Dmitrievich) |
description | For a quasilinear operator on the semiaxis a reduction theorem is proved on the cones of monotone functions in Lp - Lq setting for 0 < q < ∞, 1 |
format | Text Resource |
fullrecord | <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_196871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_196871</sourcerecordid><originalsourceid>FETCH-csuc_recercat_oai_recercat_cat_2072_1968713</originalsourceid><addsrcrecordid>eNrjZHAOSk0pTS7JzM9TKMlIzS9KzS1WSMsvUsgvSC1KLMkvKlaAyCgk5-elAjlpCrn5efklQI5CWmkeWGMxDwNrWmJOcSovlOZmMHRzDXH20E0uLk2OL0pNTi1KTiyJz0_MRHBA2MjA3Cje0NLMwtzQmBw9AIB_QCs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>text_resource</recordtype></control><display><type>text_resource</type><title>Reduction theorems for operators on the cones of monotone functions</title><source>Recercat</source><creator>Gogatishvili, A ; Stepanov, V. D. (Vladimir Dmitrievich)</creator><creatorcontrib>Gogatishvili, A ; Stepanov, V. D. (Vladimir Dmitrievich)</creatorcontrib><description><![CDATA[For a quasilinear operator on the semiaxis a reduction theorem is proved on the cones of monotone functions in Lp - Lq setting for 0 < q < ∞, 1<= p < ∞. The case 0 < p < 1 is also studied for operators with additional properties. In particular, we obtain critera for three-weight inequalities for the Hardy-type operators with Oinarov' kernel on monotone functions in the case
0 < q < p <= 1.]]></description><language>eng</language><publisher>Centre de Recerca Matemàtica</publisher><subject>Funcions monòtones ; Hardy, Espais de ; Lebesgue, Integral de ; Operadors lineals</subject><creationdate>2011</creationdate><tpages>28</tpages><format>28</format><rights>info:eu-repo/semantics/openAccess L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,777,882,26955</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/196871$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gogatishvili, A</creatorcontrib><creatorcontrib>Stepanov, V. D. (Vladimir Dmitrievich)</creatorcontrib><title>Reduction theorems for operators on the cones of monotone functions</title><description><![CDATA[For a quasilinear operator on the semiaxis a reduction theorem is proved on the cones of monotone functions in Lp - Lq setting for 0 < q < ∞, 1<= p < ∞. The case 0 < p < 1 is also studied for operators with additional properties. In particular, we obtain critera for three-weight inequalities for the Hardy-type operators with Oinarov' kernel on monotone functions in the case
0 < q < p <= 1.]]></description><subject>Funcions monòtones</subject><subject>Hardy, Espais de</subject><subject>Lebesgue, Integral de</subject><subject>Operadors lineals</subject><fulltext>true</fulltext><rsrctype>text_resource</rsrctype><creationdate>2011</creationdate><recordtype>text_resource</recordtype><sourceid>XX2</sourceid><recordid>eNrjZHAOSk0pTS7JzM9TKMlIzS9KzS1WSMsvUsgvSC1KLMkvKlaAyCgk5-elAjlpCrn5efklQI5CWmkeWGMxDwNrWmJOcSovlOZmMHRzDXH20E0uLk2OL0pNTi1KTiyJz0_MRHBA2MjA3Cje0NLMwtzQmBw9AIB_QCs</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Gogatishvili, A</creator><creator>Stepanov, V. D. (Vladimir Dmitrievich)</creator><general>Centre de Recerca Matemàtica</general><scope>XX2</scope></search><sort><creationdate>2011</creationdate><title>Reduction theorems for operators on the cones of monotone functions</title><author>Gogatishvili, A ; Stepanov, V. D. (Vladimir Dmitrievich)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_recercat_oai_recercat_cat_2072_1968713</frbrgroupid><rsrctype>text_resources</rsrctype><prefilter>text_resources</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Funcions monòtones</topic><topic>Hardy, Espais de</topic><topic>Lebesgue, Integral de</topic><topic>Operadors lineals</topic><toplevel>online_resources</toplevel><creatorcontrib>Gogatishvili, A</creatorcontrib><creatorcontrib>Stepanov, V. D. (Vladimir Dmitrievich)</creatorcontrib><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gogatishvili, A</au><au>Stepanov, V. D. (Vladimir Dmitrievich)</au><format>book</format><genre>document</genre><ristype>GEN</ristype><btitle>Reduction theorems for operators on the cones of monotone functions</btitle><date>2011</date><risdate>2011</risdate><abstract><![CDATA[For a quasilinear operator on the semiaxis a reduction theorem is proved on the cones of monotone functions in Lp - Lq setting for 0 < q < ∞, 1<= p < ∞. The case 0 < p < 1 is also studied for operators with additional properties. In particular, we obtain critera for three-weight inequalities for the Hardy-type operators with Oinarov' kernel on monotone functions in the case
0 < q < p <= 1.]]></abstract><pub>Centre de Recerca Matemàtica</pub><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_196871 |
source | Recercat |
subjects | Funcions monòtones Hardy, Espais de Lebesgue, Integral de Operadors lineals |
title | Reduction theorems for operators on the cones of monotone functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.btitle=Reduction%20theorems%20for%20operators%20on%20the%20cones%20of%20monotone%20functions&rft.au=Gogatishvili,%20A&rft.date=2011&rft_id=info:doi/&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_196871%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |