On fields of definition of torsion points of elliptic curves with complex multiplication

For any elliptic curve E defined over the rationals with complex multiplication (CM) and for every prime p, we describe the image of the mod p Galois representation attached to E. We deduce information about the field of definition of torsion points of these curves; in particular, we classify all ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2011-06, Vol.139 (6), p.1961-1969
Hauptverfasser: DIEULEFAIT, LUIS, GONZÁLEZ-JIMÉNEZ, ENRIQUE, URROZ, JORGE JIMÉNEZ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1969
container_issue 6
container_start_page 1961
container_title Proceedings of the American Mathematical Society
container_volume 139
creator DIEULEFAIT, LUIS
GONZÁLEZ-JIMÉNEZ, ENRIQUE
URROZ, JORGE JIMÉNEZ
description For any elliptic curve E defined over the rationals with complex multiplication (CM) and for every prime p, we describe the image of the mod p Galois representation attached to E. We deduce information about the field of definition of torsion points of these curves; in particular, we classify all cases where there are torsion points over Galois number fields not containing the field of definition of the CM.
doi_str_mv 10.1090/S0002-9939-2010-10621-4
format Article
fullrecord <record><control><sourceid>jstor_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_194353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41291753</jstor_id><sourcerecordid>41291753</sourcerecordid><originalsourceid>FETCH-LOGICAL-a443t-7226f42441920b9b8f1bafd67c19fe96cab2aed8536debee07fef2e73c4771223</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwCYhsWBo8EzeOl6jiJVXqApDYWY5jC1dpEtkpj78nj6psWVj21Z07Mz6EXAG7ASbZ7QtjDKmUqaTIgFFgGQLlR2QGLM9plmN2TGaHolNyFuOmlyC5mJH3dZ04b6syJo1LSut87Tvf1IPqmhCHZ9v4uht9W1W-7bxJzC582ph8-e4jMc22rex3st1VnW8rb_TQ4JycOF1Fe7G_5-Tt4f51-URX68fn5d2Kas7TjgrEzHHkHCSyQha5g0K7MhMGpLMyM7pAbct8kWalLaxlwlmHVqSGCwGI6ZzA1NfEnVHBGhv6BVSj_Z8YDjKBqv9zukj7jNhnQhNjsE61wW91-FHA1ABVjVDVwEsNUNUIVfE-eT0lWx2NrlzQtfHxEEcOKYcF6-sup7pN7CkefA4oQYwb4OTrbfz38F_kV5D0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On fields of definition of torsion points of elliptic curves with complex multiplication</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><source>Recercat</source><creator>DIEULEFAIT, LUIS ; GONZÁLEZ-JIMÉNEZ, ENRIQUE ; URROZ, JORGE JIMÉNEZ</creator><creatorcontrib>DIEULEFAIT, LUIS ; GONZÁLEZ-JIMÉNEZ, ENRIQUE ; URROZ, JORGE JIMÉNEZ</creatorcontrib><description>For any elliptic curve E defined over the rationals with complex multiplication (CM) and for every prime p, we describe the image of the mod p Galois representation attached to E. We deduce information about the field of definition of torsion points of these curves; in particular, we classify all cases where there are torsion points over Galois number fields not containing the field of definition of the CM.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/S0002-9939-2010-10621-4</identifier><identifier>CODEN: PAMYAR</identifier><language>eng</language><publisher>Providence, RI: American Mathematical Society</publisher><subject>11 Number theory ; 11F Discontinuous groups and automorphic forms ; 11G Arithmetic algebraic geometry (Diophantine geometry) ; Algebra ; Algebraic geometry ; Classificació AMS ; Corbes el·líptiques ; Curves ; Curves, Elliptic ; Exact sciences and technology ; Factorization ; Galois theory ; Galois, Teoria de ; General mathematics ; General, history and biography ; Information representations ; Integers ; Matemàtiques i estadística ; Mathematical tables ; Mathematics ; Number theory ; Polynomials ; Prime numbers ; Sciences and techniques of general use ; Teoria de nombres ; Torsion ; Torsió ; Àlgebra ; Àrees temàtiques de la UPC</subject><ispartof>Proceedings of the American Mathematical Society, 2011-06, Vol.139 (6), p.1961-1969</ispartof><rights>Copyright 2010, American Mathematical Society</rights><rights>2011 American Mathematical Society</rights><rights>2015 INIST-CNRS</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a443t-7226f42441920b9b8f1bafd67c19fe96cab2aed8536debee07fef2e73c4771223</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2010-10621-4S0002-9939-2010-10621-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2010-10621-4$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,315,781,785,804,833,886,23329,23333,26979,27929,27930,58022,58026,58255,58259,77841,77843,77851,77853</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24134150$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DIEULEFAIT, LUIS</creatorcontrib><creatorcontrib>GONZÁLEZ-JIMÉNEZ, ENRIQUE</creatorcontrib><creatorcontrib>URROZ, JORGE JIMÉNEZ</creatorcontrib><title>On fields of definition of torsion points of elliptic curves with complex multiplication</title><title>Proceedings of the American Mathematical Society</title><description>For any elliptic curve E defined over the rationals with complex multiplication (CM) and for every prime p, we describe the image of the mod p Galois representation attached to E. We deduce information about the field of definition of torsion points of these curves; in particular, we classify all cases where there are torsion points over Galois number fields not containing the field of definition of the CM.</description><subject>11 Number theory</subject><subject>11F Discontinuous groups and automorphic forms</subject><subject>11G Arithmetic algebraic geometry (Diophantine geometry)</subject><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Classificació AMS</subject><subject>Corbes el·líptiques</subject><subject>Curves</subject><subject>Curves, Elliptic</subject><subject>Exact sciences and technology</subject><subject>Factorization</subject><subject>Galois theory</subject><subject>Galois, Teoria de</subject><subject>General mathematics</subject><subject>General, history and biography</subject><subject>Information representations</subject><subject>Integers</subject><subject>Matemàtiques i estadística</subject><subject>Mathematical tables</subject><subject>Mathematics</subject><subject>Number theory</subject><subject>Polynomials</subject><subject>Prime numbers</subject><subject>Sciences and techniques of general use</subject><subject>Teoria de nombres</subject><subject>Torsion</subject><subject>Torsió</subject><subject>Àlgebra</subject><subject>Àrees temàtiques de la UPC</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqNkMtOwzAQRS0EEqXwCYhsWBo8EzeOl6jiJVXqApDYWY5jC1dpEtkpj78nj6psWVj21Z07Mz6EXAG7ASbZ7QtjDKmUqaTIgFFgGQLlR2QGLM9plmN2TGaHolNyFuOmlyC5mJH3dZ04b6syJo1LSut87Tvf1IPqmhCHZ9v4uht9W1W-7bxJzC582ph8-e4jMc22rex3st1VnW8rb_TQ4JycOF1Fe7G_5-Tt4f51-URX68fn5d2Kas7TjgrEzHHkHCSyQha5g0K7MhMGpLMyM7pAbct8kWalLaxlwlmHVqSGCwGI6ZzA1NfEnVHBGhv6BVSj_Z8YDjKBqv9zukj7jNhnQhNjsE61wW91-FHA1ABVjVDVwEsNUNUIVfE-eT0lWx2NrlzQtfHxEEcOKYcF6-sup7pN7CkefA4oQYwb4OTrbfz38F_kV5D0</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>DIEULEFAIT, LUIS</creator><creator>GONZÁLEZ-JIMÉNEZ, ENRIQUE</creator><creator>URROZ, JORGE JIMÉNEZ</creator><general>American Mathematical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20110601</creationdate><title>On fields of definition of torsion points of elliptic curves with complex multiplication</title><author>DIEULEFAIT, LUIS ; GONZÁLEZ-JIMÉNEZ, ENRIQUE ; URROZ, JORGE JIMÉNEZ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a443t-7226f42441920b9b8f1bafd67c19fe96cab2aed8536debee07fef2e73c4771223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>11 Number theory</topic><topic>11F Discontinuous groups and automorphic forms</topic><topic>11G Arithmetic algebraic geometry (Diophantine geometry)</topic><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Classificació AMS</topic><topic>Corbes el·líptiques</topic><topic>Curves</topic><topic>Curves, Elliptic</topic><topic>Exact sciences and technology</topic><topic>Factorization</topic><topic>Galois theory</topic><topic>Galois, Teoria de</topic><topic>General mathematics</topic><topic>General, history and biography</topic><topic>Information representations</topic><topic>Integers</topic><topic>Matemàtiques i estadística</topic><topic>Mathematical tables</topic><topic>Mathematics</topic><topic>Number theory</topic><topic>Polynomials</topic><topic>Prime numbers</topic><topic>Sciences and techniques of general use</topic><topic>Teoria de nombres</topic><topic>Torsion</topic><topic>Torsió</topic><topic>Àlgebra</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DIEULEFAIT, LUIS</creatorcontrib><creatorcontrib>GONZÁLEZ-JIMÉNEZ, ENRIQUE</creatorcontrib><creatorcontrib>URROZ, JORGE JIMÉNEZ</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DIEULEFAIT, LUIS</au><au>GONZÁLEZ-JIMÉNEZ, ENRIQUE</au><au>URROZ, JORGE JIMÉNEZ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On fields of definition of torsion points of elliptic curves with complex multiplication</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2011-06-01</date><risdate>2011</risdate><volume>139</volume><issue>6</issue><spage>1961</spage><epage>1969</epage><pages>1961-1969</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><coden>PAMYAR</coden><abstract>For any elliptic curve E defined over the rationals with complex multiplication (CM) and for every prime p, we describe the image of the mod p Galois representation attached to E. We deduce information about the field of definition of torsion points of these curves; in particular, we classify all cases where there are torsion points over Galois number fields not containing the field of definition of the CM.</abstract><cop>Providence, RI</cop><pub>American Mathematical Society</pub><doi>10.1090/S0002-9939-2010-10621-4</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2011-06, Vol.139 (6), p.1961-1969
issn 0002-9939
1088-6826
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_194353
source American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications; Recercat
subjects 11 Number theory
11F Discontinuous groups and automorphic forms
11G Arithmetic algebraic geometry (Diophantine geometry)
Algebra
Algebraic geometry
Classificació AMS
Corbes el·líptiques
Curves
Curves, Elliptic
Exact sciences and technology
Factorization
Galois theory
Galois, Teoria de
General mathematics
General, history and biography
Information representations
Integers
Matemàtiques i estadística
Mathematical tables
Mathematics
Number theory
Polynomials
Prime numbers
Sciences and techniques of general use
Teoria de nombres
Torsion
Torsió
Àlgebra
Àrees temàtiques de la UPC
title On fields of definition of torsion points of elliptic curves with complex multiplication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T21%3A45%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20fields%20of%20definition%20of%20torsion%20points%20of%20elliptic%20curves%20with%20complex%20multiplication&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=DIEULEFAIT,%20LUIS&rft.date=2011-06-01&rft.volume=139&rft.issue=6&rft.spage=1961&rft.epage=1969&rft.pages=1961-1969&rft.issn=0002-9939&rft.eissn=1088-6826&rft.coden=PAMYAR&rft_id=info:doi/10.1090/S0002-9939-2010-10621-4&rft_dat=%3Cjstor_csuc_%3E41291753%3C/jstor_csuc_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=41291753&rfr_iscdi=true