Simultaneous pose, correspondence and non-rigid shape
Recent works have shown that 3D shape of non-rigid surfaces can be accurately retrieved from a single image given a set of 3D-to-2D correspondences between that image and another one for which the shape is known. However, existing approaches assume that such correspondences can be readily establishe...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1196 |
---|---|
container_issue | |
container_start_page | 1189 |
container_title | |
container_volume | |
creator | Sánchez-Riera, J Östlund, J Fua, P Moreno-Noguer, F |
description | Recent works have shown that 3D shape of non-rigid surfaces can be accurately retrieved from a single image given a set of 3D-to-2D correspondences between that image and another one for which the shape is known. However, existing approaches assume that such correspondences can be readily established, which is not necessarily true when large deformations produce significant appearance changes between the input and the reference images. Furthermore, it is either assumed that the pose of the camera is known, or the estimated solution is pose-ambiguous. In this paper we relax all these assumptions and, given a set of 3D and 2D unmatched points, we present an approach to simultaneously solve their correspondences, compute the camera pose and retrieve the shape of the surface in the input image. This is achieved by introducing weak priors on the pose and shape that we model as Gaussian Mixtures. By combining them into a Kalman filter we can progressively reduce the number of 2D candidates that can be potentially matched to each 3D point, while pose and shape are refined. This lets us to perform a complete and efficient exploration of the solution space and retain the best solution. |
doi_str_mv | 10.1109/CVPR.2010.5539831 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>csuc_6IE</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_192043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5539831</ieee_id><sourcerecordid>oai_recercat_cat_2072_192043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-abda8389c8bba7b03805a23e8998e3b70b0cc552b855ff29b6446ab2117ac9403</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhiMq2FZ_gHjZu26dfO0mx1LUCgXFL7yFSTa1kXZ3SbqC_97VlnoYhgeed2YYQs4pjCkFfT19e3waM-hRSq4VpwdkSAUToujh_fAfhDoiAwoFzwtN9QkZpvQJwHjJYEDkc1h3qw3WvulS1jbJX2WuidGntqkrXzufYV1ldVPnMXyEKktLbP0pOV7gKvmzXR-R19ubl-ksnz_c3U8n89wxXWxytBUqrrRT1mJpgSuQyLhXWivPbQkWnJOSWSXlYsG0LfqD0TJKS3RaAB-Ry-3cJa5MG8Ma47dpMJjZZG5CHQMaAKmBFeKL9jbd2i51zkTvfHS4-fP38FsMSmaoZiB4n7nYZoL3fr9i91H-A95eZqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Simultaneous pose, correspondence and non-rigid shape</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sánchez-Riera, J ; Östlund, J ; Fua, P ; Moreno-Noguer, F</creator><creatorcontrib>Sánchez-Riera, J ; Östlund, J ; Fua, P ; Moreno-Noguer, F</creatorcontrib><description>Recent works have shown that 3D shape of non-rigid surfaces can be accurately retrieved from a single image given a set of 3D-to-2D correspondences between that image and another one for which the shape is known. However, existing approaches assume that such correspondences can be readily established, which is not necessarily true when large deformations produce significant appearance changes between the input and the reference images. Furthermore, it is either assumed that the pose of the camera is known, or the estimated solution is pose-ambiguous. In this paper we relax all these assumptions and, given a set of 3D and 2D unmatched points, we present an approach to simultaneously solve their correspondences, compute the camera pose and retrieve the shape of the surface in the input image. This is achieved by introducing weak priors on the pose and shape that we model as Gaussian Mixtures. By combining them into a Kalman filter we can progressively reduce the number of 2D candidates that can be potentially matched to each 3D point, while pose and shape are refined. This lets us to perform a complete and efficient exploration of the solution space and retain the best solution.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1424469848</identifier><identifier>ISBN: 9781424469840</identifier><identifier>EISBN: 142446983X</identifier><identifier>EISBN: 9781424469833</identifier><identifier>EISBN: 9781424469857</identifier><identifier>EISBN: 1424469856</identifier><identifier>DOI: 10.1109/CVPR.2010.5539831</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D reconstruction ; Application software ; Cameras ; Classificació INSPEC ; Computer graphics ; Computer Science ; Computer vision ; Computer Vision and Pattern Recognition ; computer vision object detection PARAULES AUTOR: deformable surfaces ; Enginyeria de la telecomunicació ; Graphics ; Image reconstruction ; Image retrieval ; Object recognition ; Orbital robotics ; Pattern recognition ; Pattern recognition systems ; Processament del senyal ; Reconeixement de formes ; Reconeixement de formes (Informàtica) ; Robot vision systems ; Shape ; Surface reconstruction ; Àrees temàtiques de la UPC</subject><ispartof>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, p.1189-1196</ispartof><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5539831$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,26974,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5539831$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/inria-00590264$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez-Riera, J</creatorcontrib><creatorcontrib>Östlund, J</creatorcontrib><creatorcontrib>Fua, P</creatorcontrib><creatorcontrib>Moreno-Noguer, F</creatorcontrib><title>Simultaneous pose, correspondence and non-rigid shape</title><title>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Recent works have shown that 3D shape of non-rigid surfaces can be accurately retrieved from a single image given a set of 3D-to-2D correspondences between that image and another one for which the shape is known. However, existing approaches assume that such correspondences can be readily established, which is not necessarily true when large deformations produce significant appearance changes between the input and the reference images. Furthermore, it is either assumed that the pose of the camera is known, or the estimated solution is pose-ambiguous. In this paper we relax all these assumptions and, given a set of 3D and 2D unmatched points, we present an approach to simultaneously solve their correspondences, compute the camera pose and retrieve the shape of the surface in the input image. This is achieved by introducing weak priors on the pose and shape that we model as Gaussian Mixtures. By combining them into a Kalman filter we can progressively reduce the number of 2D candidates that can be potentially matched to each 3D point, while pose and shape are refined. This lets us to perform a complete and efficient exploration of the solution space and retain the best solution.</description><subject>3D reconstruction</subject><subject>Application software</subject><subject>Cameras</subject><subject>Classificació INSPEC</subject><subject>Computer graphics</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Computer Vision and Pattern Recognition</subject><subject>computer vision object detection PARAULES AUTOR: deformable surfaces</subject><subject>Enginyeria de la telecomunicació</subject><subject>Graphics</subject><subject>Image reconstruction</subject><subject>Image retrieval</subject><subject>Object recognition</subject><subject>Orbital robotics</subject><subject>Pattern recognition</subject><subject>Pattern recognition systems</subject><subject>Processament del senyal</subject><subject>Reconeixement de formes</subject><subject>Reconeixement de formes (Informàtica)</subject><subject>Robot vision systems</subject><subject>Shape</subject><subject>Surface reconstruction</subject><subject>Àrees temàtiques de la UPC</subject><issn>1063-6919</issn><isbn>1424469848</isbn><isbn>9781424469840</isbn><isbn>142446983X</isbn><isbn>9781424469833</isbn><isbn>9781424469857</isbn><isbn>1424469856</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>XX2</sourceid><recordid>eNpFkE1LAzEQhiMq2FZ_gHjZu26dfO0mx1LUCgXFL7yFSTa1kXZ3SbqC_97VlnoYhgeed2YYQs4pjCkFfT19e3waM-hRSq4VpwdkSAUToujh_fAfhDoiAwoFzwtN9QkZpvQJwHjJYEDkc1h3qw3WvulS1jbJX2WuidGntqkrXzufYV1ldVPnMXyEKktLbP0pOV7gKvmzXR-R19ubl-ksnz_c3U8n89wxXWxytBUqrrRT1mJpgSuQyLhXWivPbQkWnJOSWSXlYsG0LfqD0TJKS3RaAB-Ry-3cJa5MG8Ma47dpMJjZZG5CHQMaAKmBFeKL9jbd2i51zkTvfHS4-fP38FsMSmaoZiB4n7nYZoL3fr9i91H-A95eZqY</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Sánchez-Riera, J</creator><creator>Östlund, J</creator><creator>Fua, P</creator><creator>Moreno-Noguer, F</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>XX2</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20100101</creationdate><title>Simultaneous pose, correspondence and non-rigid shape</title><author>Sánchez-Riera, J ; Östlund, J ; Fua, P ; Moreno-Noguer, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-abda8389c8bba7b03805a23e8998e3b70b0cc552b855ff29b6446ab2117ac9403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3D reconstruction</topic><topic>Application software</topic><topic>Cameras</topic><topic>Classificació INSPEC</topic><topic>Computer graphics</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Computer Vision and Pattern Recognition</topic><topic>computer vision object detection PARAULES AUTOR: deformable surfaces</topic><topic>Enginyeria de la telecomunicació</topic><topic>Graphics</topic><topic>Image reconstruction</topic><topic>Image retrieval</topic><topic>Object recognition</topic><topic>Orbital robotics</topic><topic>Pattern recognition</topic><topic>Pattern recognition systems</topic><topic>Processament del senyal</topic><topic>Reconeixement de formes</topic><topic>Reconeixement de formes (Informàtica)</topic><topic>Robot vision systems</topic><topic>Shape</topic><topic>Surface reconstruction</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-Riera, J</creatorcontrib><creatorcontrib>Östlund, J</creatorcontrib><creatorcontrib>Fua, P</creatorcontrib><creatorcontrib>Moreno-Noguer, F</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Recercat</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sánchez-Riera, J</au><au>Östlund, J</au><au>Fua, P</au><au>Moreno-Noguer, F</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Simultaneous pose, correspondence and non-rigid shape</atitle><btitle>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>1189</spage><epage>1196</epage><pages>1189-1196</pages><issn>1063-6919</issn><isbn>1424469848</isbn><isbn>9781424469840</isbn><eisbn>142446983X</eisbn><eisbn>9781424469833</eisbn><eisbn>9781424469857</eisbn><eisbn>1424469856</eisbn><abstract>Recent works have shown that 3D shape of non-rigid surfaces can be accurately retrieved from a single image given a set of 3D-to-2D correspondences between that image and another one for which the shape is known. However, existing approaches assume that such correspondences can be readily established, which is not necessarily true when large deformations produce significant appearance changes between the input and the reference images. Furthermore, it is either assumed that the pose of the camera is known, or the estimated solution is pose-ambiguous. In this paper we relax all these assumptions and, given a set of 3D and 2D unmatched points, we present an approach to simultaneously solve their correspondences, compute the camera pose and retrieve the shape of the surface in the input image. This is achieved by introducing weak priors on the pose and shape that we model as Gaussian Mixtures. By combining them into a Kalman filter we can progressively reduce the number of 2D candidates that can be potentially matched to each 3D point, while pose and shape are refined. This lets us to perform a complete and efficient exploration of the solution space and retain the best solution.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2010.5539831</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, p.1189-1196 |
issn | 1063-6919 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_192043 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | 3D reconstruction Application software Cameras Classificació INSPEC Computer graphics Computer Science Computer vision Computer Vision and Pattern Recognition computer vision object detection PARAULES AUTOR: deformable surfaces Enginyeria de la telecomunicació Graphics Image reconstruction Image retrieval Object recognition Orbital robotics Pattern recognition Pattern recognition systems Processament del senyal Reconeixement de formes Reconeixement de formes (Informàtica) Robot vision systems Shape Surface reconstruction Àrees temàtiques de la UPC |
title | Simultaneous pose, correspondence and non-rigid shape |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Simultaneous%20pose,%20correspondence%20and%20non-rigid%20shape&rft.btitle=2010%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Sa%CC%81nchez-Riera,%20J&rft.date=2010-01-01&rft.spage=1189&rft.epage=1196&rft.pages=1189-1196&rft.issn=1063-6919&rft.isbn=1424469848&rft.isbn_list=9781424469840&rft_id=info:doi/10.1109/CVPR.2010.5539831&rft_dat=%3Ccsuc_6IE%3Eoai_recercat_cat_2072_192043%3C/csuc_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142446983X&rft.eisbn_list=9781424469833&rft.eisbn_list=9781424469857&rft.eisbn_list=1424469856&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5539831&rfr_iscdi=true |