Simultaneous pose, correspondence and non-rigid shape

Recent works have shown that 3D shape of non-rigid surfaces can be accurately retrieved from a single image given a set of 3D-to-2D correspondences between that image and another one for which the shape is known. However, existing approaches assume that such correspondences can be readily establishe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sánchez-Riera, J, Östlund, J, Fua, P, Moreno-Noguer, F
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1196
container_issue
container_start_page 1189
container_title
container_volume
creator Sánchez-Riera, J
Östlund, J
Fua, P
Moreno-Noguer, F
description Recent works have shown that 3D shape of non-rigid surfaces can be accurately retrieved from a single image given a set of 3D-to-2D correspondences between that image and another one for which the shape is known. However, existing approaches assume that such correspondences can be readily established, which is not necessarily true when large deformations produce significant appearance changes between the input and the reference images. Furthermore, it is either assumed that the pose of the camera is known, or the estimated solution is pose-ambiguous. In this paper we relax all these assumptions and, given a set of 3D and 2D unmatched points, we present an approach to simultaneously solve their correspondences, compute the camera pose and retrieve the shape of the surface in the input image. This is achieved by introducing weak priors on the pose and shape that we model as Gaussian Mixtures. By combining them into a Kalman filter we can progressively reduce the number of 2D candidates that can be potentially matched to each 3D point, while pose and shape are refined. This lets us to perform a complete and efficient exploration of the solution space and retain the best solution.
doi_str_mv 10.1109/CVPR.2010.5539831
format Conference Proceeding
fullrecord <record><control><sourceid>csuc_6IE</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_192043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5539831</ieee_id><sourcerecordid>oai_recercat_cat_2072_192043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-abda8389c8bba7b03805a23e8998e3b70b0cc552b855ff29b6446ab2117ac9403</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhiMq2FZ_gHjZu26dfO0mx1LUCgXFL7yFSTa1kXZ3SbqC_97VlnoYhgeed2YYQs4pjCkFfT19e3waM-hRSq4VpwdkSAUToujh_fAfhDoiAwoFzwtN9QkZpvQJwHjJYEDkc1h3qw3WvulS1jbJX2WuidGntqkrXzufYV1ldVPnMXyEKktLbP0pOV7gKvmzXR-R19ubl-ksnz_c3U8n89wxXWxytBUqrrRT1mJpgSuQyLhXWivPbQkWnJOSWSXlYsG0LfqD0TJKS3RaAB-Ry-3cJa5MG8Ma47dpMJjZZG5CHQMaAKmBFeKL9jbd2i51zkTvfHS4-fP38FsMSmaoZiB4n7nYZoL3fr9i91H-A95eZqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Simultaneous pose, correspondence and non-rigid shape</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sánchez-Riera, J ; Östlund, J ; Fua, P ; Moreno-Noguer, F</creator><creatorcontrib>Sánchez-Riera, J ; Östlund, J ; Fua, P ; Moreno-Noguer, F</creatorcontrib><description>Recent works have shown that 3D shape of non-rigid surfaces can be accurately retrieved from a single image given a set of 3D-to-2D correspondences between that image and another one for which the shape is known. However, existing approaches assume that such correspondences can be readily established, which is not necessarily true when large deformations produce significant appearance changes between the input and the reference images. Furthermore, it is either assumed that the pose of the camera is known, or the estimated solution is pose-ambiguous. In this paper we relax all these assumptions and, given a set of 3D and 2D unmatched points, we present an approach to simultaneously solve their correspondences, compute the camera pose and retrieve the shape of the surface in the input image. This is achieved by introducing weak priors on the pose and shape that we model as Gaussian Mixtures. By combining them into a Kalman filter we can progressively reduce the number of 2D candidates that can be potentially matched to each 3D point, while pose and shape are refined. This lets us to perform a complete and efficient exploration of the solution space and retain the best solution.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1424469848</identifier><identifier>ISBN: 9781424469840</identifier><identifier>EISBN: 142446983X</identifier><identifier>EISBN: 9781424469833</identifier><identifier>EISBN: 9781424469857</identifier><identifier>EISBN: 1424469856</identifier><identifier>DOI: 10.1109/CVPR.2010.5539831</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D reconstruction ; Application software ; Cameras ; Classificació INSPEC ; Computer graphics ; Computer Science ; Computer vision ; Computer Vision and Pattern Recognition ; computer vision object detection PARAULES AUTOR: deformable surfaces ; Enginyeria de la telecomunicació ; Graphics ; Image reconstruction ; Image retrieval ; Object recognition ; Orbital robotics ; Pattern recognition ; Pattern recognition systems ; Processament del senyal ; Reconeixement de formes ; Reconeixement de formes (Informàtica) ; Robot vision systems ; Shape ; Surface reconstruction ; Àrees temàtiques de la UPC</subject><ispartof>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, p.1189-1196</ispartof><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5539831$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,26974,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5539831$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/inria-00590264$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sánchez-Riera, J</creatorcontrib><creatorcontrib>Östlund, J</creatorcontrib><creatorcontrib>Fua, P</creatorcontrib><creatorcontrib>Moreno-Noguer, F</creatorcontrib><title>Simultaneous pose, correspondence and non-rigid shape</title><title>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Recent works have shown that 3D shape of non-rigid surfaces can be accurately retrieved from a single image given a set of 3D-to-2D correspondences between that image and another one for which the shape is known. However, existing approaches assume that such correspondences can be readily established, which is not necessarily true when large deformations produce significant appearance changes between the input and the reference images. Furthermore, it is either assumed that the pose of the camera is known, or the estimated solution is pose-ambiguous. In this paper we relax all these assumptions and, given a set of 3D and 2D unmatched points, we present an approach to simultaneously solve their correspondences, compute the camera pose and retrieve the shape of the surface in the input image. This is achieved by introducing weak priors on the pose and shape that we model as Gaussian Mixtures. By combining them into a Kalman filter we can progressively reduce the number of 2D candidates that can be potentially matched to each 3D point, while pose and shape are refined. This lets us to perform a complete and efficient exploration of the solution space and retain the best solution.</description><subject>3D reconstruction</subject><subject>Application software</subject><subject>Cameras</subject><subject>Classificació INSPEC</subject><subject>Computer graphics</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Computer Vision and Pattern Recognition</subject><subject>computer vision object detection PARAULES AUTOR: deformable surfaces</subject><subject>Enginyeria de la telecomunicació</subject><subject>Graphics</subject><subject>Image reconstruction</subject><subject>Image retrieval</subject><subject>Object recognition</subject><subject>Orbital robotics</subject><subject>Pattern recognition</subject><subject>Pattern recognition systems</subject><subject>Processament del senyal</subject><subject>Reconeixement de formes</subject><subject>Reconeixement de formes (Informàtica)</subject><subject>Robot vision systems</subject><subject>Shape</subject><subject>Surface reconstruction</subject><subject>Àrees temàtiques de la UPC</subject><issn>1063-6919</issn><isbn>1424469848</isbn><isbn>9781424469840</isbn><isbn>142446983X</isbn><isbn>9781424469833</isbn><isbn>9781424469857</isbn><isbn>1424469856</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>XX2</sourceid><recordid>eNpFkE1LAzEQhiMq2FZ_gHjZu26dfO0mx1LUCgXFL7yFSTa1kXZ3SbqC_97VlnoYhgeed2YYQs4pjCkFfT19e3waM-hRSq4VpwdkSAUToujh_fAfhDoiAwoFzwtN9QkZpvQJwHjJYEDkc1h3qw3WvulS1jbJX2WuidGntqkrXzufYV1ldVPnMXyEKktLbP0pOV7gKvmzXR-R19ubl-ksnz_c3U8n89wxXWxytBUqrrRT1mJpgSuQyLhXWivPbQkWnJOSWSXlYsG0LfqD0TJKS3RaAB-Ry-3cJa5MG8Ma47dpMJjZZG5CHQMaAKmBFeKL9jbd2i51zkTvfHS4-fP38FsMSmaoZiB4n7nYZoL3fr9i91H-A95eZqY</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Sánchez-Riera, J</creator><creator>Östlund, J</creator><creator>Fua, P</creator><creator>Moreno-Noguer, F</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>XX2</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20100101</creationdate><title>Simultaneous pose, correspondence and non-rigid shape</title><author>Sánchez-Riera, J ; Östlund, J ; Fua, P ; Moreno-Noguer, F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-abda8389c8bba7b03805a23e8998e3b70b0cc552b855ff29b6446ab2117ac9403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3D reconstruction</topic><topic>Application software</topic><topic>Cameras</topic><topic>Classificació INSPEC</topic><topic>Computer graphics</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Computer Vision and Pattern Recognition</topic><topic>computer vision object detection PARAULES AUTOR: deformable surfaces</topic><topic>Enginyeria de la telecomunicació</topic><topic>Graphics</topic><topic>Image reconstruction</topic><topic>Image retrieval</topic><topic>Object recognition</topic><topic>Orbital robotics</topic><topic>Pattern recognition</topic><topic>Pattern recognition systems</topic><topic>Processament del senyal</topic><topic>Reconeixement de formes</topic><topic>Reconeixement de formes (Informàtica)</topic><topic>Robot vision systems</topic><topic>Shape</topic><topic>Surface reconstruction</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-Riera, J</creatorcontrib><creatorcontrib>Östlund, J</creatorcontrib><creatorcontrib>Fua, P</creatorcontrib><creatorcontrib>Moreno-Noguer, F</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Recercat</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sánchez-Riera, J</au><au>Östlund, J</au><au>Fua, P</au><au>Moreno-Noguer, F</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Simultaneous pose, correspondence and non-rigid shape</atitle><btitle>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2010-01-01</date><risdate>2010</risdate><spage>1189</spage><epage>1196</epage><pages>1189-1196</pages><issn>1063-6919</issn><isbn>1424469848</isbn><isbn>9781424469840</isbn><eisbn>142446983X</eisbn><eisbn>9781424469833</eisbn><eisbn>9781424469857</eisbn><eisbn>1424469856</eisbn><abstract>Recent works have shown that 3D shape of non-rigid surfaces can be accurately retrieved from a single image given a set of 3D-to-2D correspondences between that image and another one for which the shape is known. However, existing approaches assume that such correspondences can be readily established, which is not necessarily true when large deformations produce significant appearance changes between the input and the reference images. Furthermore, it is either assumed that the pose of the camera is known, or the estimated solution is pose-ambiguous. In this paper we relax all these assumptions and, given a set of 3D and 2D unmatched points, we present an approach to simultaneously solve their correspondences, compute the camera pose and retrieve the shape of the surface in the input image. This is achieved by introducing weak priors on the pose and shape that we model as Gaussian Mixtures. By combining them into a Kalman filter we can progressively reduce the number of 2D candidates that can be potentially matched to each 3D point, while pose and shape are refined. This lets us to perform a complete and efficient exploration of the solution space and retain the best solution.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2010.5539831</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, p.1189-1196
issn 1063-6919
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_192043
source IEEE Electronic Library (IEL) Conference Proceedings
subjects 3D reconstruction
Application software
Cameras
Classificació INSPEC
Computer graphics
Computer Science
Computer vision
Computer Vision and Pattern Recognition
computer vision object detection PARAULES AUTOR: deformable surfaces
Enginyeria de la telecomunicació
Graphics
Image reconstruction
Image retrieval
Object recognition
Orbital robotics
Pattern recognition
Pattern recognition systems
Processament del senyal
Reconeixement de formes
Reconeixement de formes (Informàtica)
Robot vision systems
Shape
Surface reconstruction
Àrees temàtiques de la UPC
title Simultaneous pose, correspondence and non-rigid shape
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Simultaneous%20pose,%20correspondence%20and%20non-rigid%20shape&rft.btitle=2010%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Sa%CC%81nchez-Riera,%20J&rft.date=2010-01-01&rft.spage=1189&rft.epage=1196&rft.pages=1189-1196&rft.issn=1063-6919&rft.isbn=1424469848&rft.isbn_list=9781424469840&rft_id=info:doi/10.1109/CVPR.2010.5539831&rft_dat=%3Ccsuc_6IE%3Eoai_recercat_cat_2072_192043%3C/csuc_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142446983X&rft.eisbn_list=9781424469833&rft.eisbn_list=9781424469857&rft.eisbn_list=1424469856&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5539831&rfr_iscdi=true