Molecular Dynamics Simulation of Collective Motions in Binary Liquids
Collective dynamic properties of different kind of binary liquid mixtures have been investigated by molecular dynamics simulation. The study includes both the longitudinal and the transverse current spectra in simple liquid alloys, 1:1 molten salts and liquid binary mixtures of neutral particles wit...
Gespeichert in:
Veröffentlicht in: | Molecular simulation 2003-06, Vol.29 (6-7), p.373-384 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 384 |
---|---|
container_issue | 6-7 |
container_start_page | 373 |
container_title | Molecular simulation |
container_volume | 29 |
creator | Anento, N. Padró, J.A. Alcaraz, O. Trullàs, J. |
description | Collective dynamic properties of different kind of binary liquid mixtures have been investigated by molecular dynamics simulation. The study includes both the longitudinal and the transverse current spectra in simple liquid alloys, 1:1 molten salts and liquid binary mixtures of neutral particles with an ionic-like structure. These systems were chosen as representative of binary liquids with different static structures in order to analyse the effects of structural ordering on the mechanisms of dynamic collective properties. The effect of the mass asymmetry between the two species in the mixture has been also discussed from the results for two different mass ratios for each kind of structure. Two length scales have been considered. On the one hand, the hydrodynamic scale (low wave numbers), where the modes for the partial currents of the two species are characterised by very close frequencies. On the other hand, the molecular scale (higher wave numbers), where the characteristic frequencies for the two species show noticeable differences. Vibrational concentration current modes (optic modes) have been found in neutral mixtures though their influence is rather weak, being the collective dynamic properties of this kind of systems dominated by the mass current modes (acoustic modes). On the contrary, in mixtures of charged particles such as molten salts the contribution of the concentration (charge) currents to the collective dynamics is important and optic modes can be characterised by a well-defined frequency for a wide range of wave numbers. It has been observed that heavy particles have a more relevant role on the mass current correlations whereas light particles play a dominant role on the concentration current correlations. The overall results for the three kinds of liquid mixtures analysed in this paper show that both the longitudinal and transverse current spectra are little dependent on the static structure of the system whereas marked differences are revealed when the particles in the system are either neutral or carry an electric charge. |
doi_str_mv | 10.1080/0892702031000117171 |
format | Article |
fullrecord | <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_191644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_191644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-76fc14f2b03e189e80b540f0b1c779c89d10d4fa46570dcb7ba7d119cf9586e13</originalsourceid><addsrcrecordid>eNqFkM9KxDAQxoMouK4-gZe8QHUmTZvmIui6_oFdPKjnkKYJRLqNJl11396WXfCyKMMwzMf3mxmGkHOEC4QKLqGSTACDHAEAUQxxQCYITGbA8-KQTEZHNljYMTlJ6Q2AYcHLCZkvQ2vNutWR3m46vfIm0We_GoTeh44GR2ehHRy9_7R0GUYxUd_RG9_puKEL_7H2TTolR063yZ7t6pS83s1fZg_Z4un-cXa9yAwvWZ-J0hnkjtWQW6ykraAuODio0QghTSUbhIY7zctCQGNqUWvRIErjZFGVFvMpwe1ck9ZGRWtsNLpXQfvfZkwGgimUWHI-MPmOiSGlaJ16j341HK8Q1Pg9ted7AyW3lO9ciCv9FWLbqF5v2hBd1J3xaR-n-u9-YK_-ZfO_lv8AOhyHqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Dynamics Simulation of Collective Motions in Binary Liquids</title><source>Recercat</source><creator>Anento, N. ; Padró, J.A. ; Alcaraz, O. ; Trullàs, J.</creator><creatorcontrib>Anento, N. ; Padró, J.A. ; Alcaraz, O. ; Trullàs, J.</creatorcontrib><description>Collective dynamic properties of different kind of binary liquid mixtures have been investigated by molecular dynamics simulation. The study includes both the longitudinal and the transverse current spectra in simple liquid alloys, 1:1 molten salts and liquid binary mixtures of neutral particles with an ionic-like structure. These systems were chosen as representative of binary liquids with different static structures in order to analyse the effects of structural ordering on the mechanisms of dynamic collective properties. The effect of the mass asymmetry between the two species in the mixture has been also discussed from the results for two different mass ratios for each kind of structure. Two length scales have been considered. On the one hand, the hydrodynamic scale (low wave numbers), where the modes for the partial currents of the two species are characterised by very close frequencies. On the other hand, the molecular scale (higher wave numbers), where the characteristic frequencies for the two species show noticeable differences. Vibrational concentration current modes (optic modes) have been found in neutral mixtures though their influence is rather weak, being the collective dynamic properties of this kind of systems dominated by the mass current modes (acoustic modes). On the contrary, in mixtures of charged particles such as molten salts the contribution of the concentration (charge) currents to the collective dynamics is important and optic modes can be characterised by a well-defined frequency for a wide range of wave numbers. It has been observed that heavy particles have a more relevant role on the mass current correlations whereas light particles play a dominant role on the concentration current correlations. The overall results for the three kinds of liquid mixtures analysed in this paper show that both the longitudinal and transverse current spectra are little dependent on the static structure of the system whereas marked differences are revealed when the particles in the system are either neutral or carry an electric charge.</description><identifier>ISSN: 0892-7022</identifier><identifier>EISSN: 1029-0435</identifier><identifier>DOI: 10.1080/0892702031000117171</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Dinàmica molecular ; Dynamic Structure Factors ; Fused salts ; Hidrodinàmica ; Hydrodynamics ; Liquid Mixtures ; Matemàtica aplicada a les ciències ; Matemàtiques i estadística ; Molecular dynamics ; Molecular Dynamics Simulation ; Sal ; Simulation methods ; Transverse Modes ; Àrees temàtiques de la UPC</subject><ispartof>Molecular simulation, 2003-06, Vol.29 (6-7), p.373-384</ispartof><rights>Copyright Taylor & Francis Group, LLC 2003</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-76fc14f2b03e189e80b540f0b1c779c89d10d4fa46570dcb7ba7d119cf9586e13</citedby><cites>FETCH-LOGICAL-c462t-76fc14f2b03e189e80b540f0b1c779c89d10d4fa46570dcb7ba7d119cf9586e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,26953</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/191644$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Anento, N.</creatorcontrib><creatorcontrib>Padró, J.A.</creatorcontrib><creatorcontrib>Alcaraz, O.</creatorcontrib><creatorcontrib>Trullàs, J.</creatorcontrib><title>Molecular Dynamics Simulation of Collective Motions in Binary Liquids</title><title>Molecular simulation</title><description>Collective dynamic properties of different kind of binary liquid mixtures have been investigated by molecular dynamics simulation. The study includes both the longitudinal and the transverse current spectra in simple liquid alloys, 1:1 molten salts and liquid binary mixtures of neutral particles with an ionic-like structure. These systems were chosen as representative of binary liquids with different static structures in order to analyse the effects of structural ordering on the mechanisms of dynamic collective properties. The effect of the mass asymmetry between the two species in the mixture has been also discussed from the results for two different mass ratios for each kind of structure. Two length scales have been considered. On the one hand, the hydrodynamic scale (low wave numbers), where the modes for the partial currents of the two species are characterised by very close frequencies. On the other hand, the molecular scale (higher wave numbers), where the characteristic frequencies for the two species show noticeable differences. Vibrational concentration current modes (optic modes) have been found in neutral mixtures though their influence is rather weak, being the collective dynamic properties of this kind of systems dominated by the mass current modes (acoustic modes). On the contrary, in mixtures of charged particles such as molten salts the contribution of the concentration (charge) currents to the collective dynamics is important and optic modes can be characterised by a well-defined frequency for a wide range of wave numbers. It has been observed that heavy particles have a more relevant role on the mass current correlations whereas light particles play a dominant role on the concentration current correlations. The overall results for the three kinds of liquid mixtures analysed in this paper show that both the longitudinal and transverse current spectra are little dependent on the static structure of the system whereas marked differences are revealed when the particles in the system are either neutral or carry an electric charge.</description><subject>Dinàmica molecular</subject><subject>Dynamic Structure Factors</subject><subject>Fused salts</subject><subject>Hidrodinàmica</subject><subject>Hydrodynamics</subject><subject>Liquid Mixtures</subject><subject>Matemàtica aplicada a les ciències</subject><subject>Matemàtiques i estadística</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Sal</subject><subject>Simulation methods</subject><subject>Transverse Modes</subject><subject>Àrees temàtiques de la UPC</subject><issn>0892-7022</issn><issn>1029-0435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqFkM9KxDAQxoMouK4-gZe8QHUmTZvmIui6_oFdPKjnkKYJRLqNJl11396WXfCyKMMwzMf3mxmGkHOEC4QKLqGSTACDHAEAUQxxQCYITGbA8-KQTEZHNljYMTlJ6Q2AYcHLCZkvQ2vNutWR3m46vfIm0We_GoTeh44GR2ehHRy9_7R0GUYxUd_RG9_puKEL_7H2TTolR063yZ7t6pS83s1fZg_Z4un-cXa9yAwvWZ-J0hnkjtWQW6ykraAuODio0QghTSUbhIY7zctCQGNqUWvRIErjZFGVFvMpwe1ck9ZGRWtsNLpXQfvfZkwGgimUWHI-MPmOiSGlaJ16j341HK8Q1Pg9ted7AyW3lO9ciCv9FWLbqF5v2hBd1J3xaR-n-u9-YK_-ZfO_lv8AOhyHqw</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Anento, N.</creator><creator>Padró, J.A.</creator><creator>Alcaraz, O.</creator><creator>Trullàs, J.</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20030601</creationdate><title>Molecular Dynamics Simulation of Collective Motions in Binary Liquids</title><author>Anento, N. ; Padró, J.A. ; Alcaraz, O. ; Trullàs, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-76fc14f2b03e189e80b540f0b1c779c89d10d4fa46570dcb7ba7d119cf9586e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Dinàmica molecular</topic><topic>Dynamic Structure Factors</topic><topic>Fused salts</topic><topic>Hidrodinàmica</topic><topic>Hydrodynamics</topic><topic>Liquid Mixtures</topic><topic>Matemàtica aplicada a les ciències</topic><topic>Matemàtiques i estadística</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Sal</topic><topic>Simulation methods</topic><topic>Transverse Modes</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anento, N.</creatorcontrib><creatorcontrib>Padró, J.A.</creatorcontrib><creatorcontrib>Alcaraz, O.</creatorcontrib><creatorcontrib>Trullàs, J.</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Molecular simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anento, N.</au><au>Padró, J.A.</au><au>Alcaraz, O.</au><au>Trullàs, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulation of Collective Motions in Binary Liquids</atitle><jtitle>Molecular simulation</jtitle><date>2003-06-01</date><risdate>2003</risdate><volume>29</volume><issue>6-7</issue><spage>373</spage><epage>384</epage><pages>373-384</pages><issn>0892-7022</issn><eissn>1029-0435</eissn><abstract>Collective dynamic properties of different kind of binary liquid mixtures have been investigated by molecular dynamics simulation. The study includes both the longitudinal and the transverse current spectra in simple liquid alloys, 1:1 molten salts and liquid binary mixtures of neutral particles with an ionic-like structure. These systems were chosen as representative of binary liquids with different static structures in order to analyse the effects of structural ordering on the mechanisms of dynamic collective properties. The effect of the mass asymmetry between the two species in the mixture has been also discussed from the results for two different mass ratios for each kind of structure. Two length scales have been considered. On the one hand, the hydrodynamic scale (low wave numbers), where the modes for the partial currents of the two species are characterised by very close frequencies. On the other hand, the molecular scale (higher wave numbers), where the characteristic frequencies for the two species show noticeable differences. Vibrational concentration current modes (optic modes) have been found in neutral mixtures though their influence is rather weak, being the collective dynamic properties of this kind of systems dominated by the mass current modes (acoustic modes). On the contrary, in mixtures of charged particles such as molten salts the contribution of the concentration (charge) currents to the collective dynamics is important and optic modes can be characterised by a well-defined frequency for a wide range of wave numbers. It has been observed that heavy particles have a more relevant role on the mass current correlations whereas light particles play a dominant role on the concentration current correlations. The overall results for the three kinds of liquid mixtures analysed in this paper show that both the longitudinal and transverse current spectra are little dependent on the static structure of the system whereas marked differences are revealed when the particles in the system are either neutral or carry an electric charge.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/0892702031000117171</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0892-7022 |
ispartof | Molecular simulation, 2003-06, Vol.29 (6-7), p.373-384 |
issn | 0892-7022 1029-0435 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_191644 |
source | Recercat |
subjects | Dinàmica molecular Dynamic Structure Factors Fused salts Hidrodinàmica Hydrodynamics Liquid Mixtures Matemàtica aplicada a les ciències Matemàtiques i estadística Molecular dynamics Molecular Dynamics Simulation Sal Simulation methods Transverse Modes Àrees temàtiques de la UPC |
title | Molecular Dynamics Simulation of Collective Motions in Binary Liquids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulation%20of%20Collective%20Motions%20in%20Binary%20Liquids&rft.jtitle=Molecular%20simulation&rft.au=Anento,%20N.&rft.date=2003-06-01&rft.volume=29&rft.issue=6-7&rft.spage=373&rft.epage=384&rft.pages=373-384&rft.issn=0892-7022&rft.eissn=1029-0435&rft_id=info:doi/10.1080/0892702031000117171&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_191644%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |