Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks

The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2009-01, Vol.2009, p.4343-4346
Hauptverfasser: Arizmendi, Carlos, Romero, Enrique, Alquezar, Rene, Caminal, Pere, Diaz, Ivan, Benito, Salvador, Giraldo, Beatriz F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4346
container_issue
container_start_page 4343
container_title 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
container_volume 2009
creator Arizmendi, Carlos
Romero, Enrique
Alquezar, Rene
Caminal, Pere
Diaz, Ivan
Benito, Salvador
Giraldo, Beatriz F.
description The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 23 patients with successful test but that had to be reintubated before 48 hours (group R). Each patient was characterized using 8 time series and 6 statistics extracted from respiratory and cardiac signals. A moving window statistical analysis was applied obtaining for each patient a sequence of patterns of 48 features. Applying a cluster analysis two groups with the majority dataset were obtained. Neural networks were applied to discriminate between patients from groups S, F and R. The best performance obtained was 84.0% of well classified patients using a linear perceptron trained with a feature selection procedure (that selected 19 of the 48 features) and taking as input the main cluster centroid. However, the classification baseline 69.8% could not be improved when using the original set of patterns instead of the centroids to classify the patients.
doi_str_mv 10.1109/IEMBS.2009.5332742
format Article
fullrecord <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_191205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5332742</ieee_id><sourcerecordid>oai_recercat_cat_2072_191205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-7a70beb40586e336b6938d120bca01d0935467c0e307d78685ab0b749c32e1383</originalsourceid><addsrcrecordid>eNpdkcdOxDAQhk0T_QVAQn6BLO7lCEuVQBwAiVvkOLNgSFnZCYi3x7AUicNoyv_Nf5hBaI-SCaXEHl6eXh_fThghdiI5Z1qwJbRrtaGCCcGZVXoZbVIpTSEUlSv_tNWsESsKZfTDBtpK6ZmQ7CXpOtqg1ipumNhE8xM3ONyGLnSPuJ_huRsCdEPCfYffwH2Nhxhck_As9i1uwT_lqXcNfs1caDKf0TF9gr4Z0wARu8417ymkXNS4gzFmuoPhrY8vaQetzbIb7H7nbXR_dno3vSiubs4vp0dXhRdSDYV2mlRQCSKNAs5VpSw3NWWk8o7QmlguhdKeACe61kYZ6SpSaWE9Z0C54duILnx9Gn0ZwUP0bih7F_6az2BEs5La7CzzzsFiZz5WLdTlPIbWxffy51wZ2F8AAQB-5e_n8A-gTXzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks</title><source>Recercat</source><creator>Arizmendi, Carlos ; Romero, Enrique ; Alquezar, Rene ; Caminal, Pere ; Diaz, Ivan ; Benito, Salvador ; Giraldo, Beatriz F.</creator><creatorcontrib>Arizmendi, Carlos ; Romero, Enrique ; Alquezar, Rene ; Caminal, Pere ; Diaz, Ivan ; Benito, Salvador ; Giraldo, Beatriz F.</creatorcontrib><description>The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 23 patients with successful test but that had to be reintubated before 48 hours (group R). Each patient was characterized using 8 time series and 6 statistics extracted from respiratory and cardiac signals. A moving window statistical analysis was applied obtaining for each patient a sequence of patterns of 48 features. Applying a cluster analysis two groups with the majority dataset were obtained. Neural networks were applied to discriminate between patients from groups S, F and R. The best performance obtained was 84.0% of well classified patients using a linear perceptron trained with a feature selection procedure (that selected 19 of the 48 features) and taking as input the main cluster centroid. However, the classification baseline 69.8% could not be improved when using the original set of patterns instead of the centroids to classify the patients.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424432967</identifier><identifier>ISBN: 1424432960</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781424432967</identifier><identifier>EISBN: 1424432960</identifier><identifier>DOI: 10.1109/IEMBS.2009.5332742</identifier><identifier>PMID: 19963824</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aplicacions de la informàtica ; Aprenentatge automàtic ; Bioinformàtica ; Cluster Analysis ; Computer Simulation ; Computers ; Data analysis ; Data Interpretation, Statistical ; Data mining ; Data processing ; Electrocardiography - methods ; Equipment Design ; Hospitals ; Humans ; Informàtica ; Intel·ligència artificial ; Machine learning ; Medical informatics ; Medicina ; Medicine ; Mineria de dades ; Models, Statistical ; Monitoring, Physiologic - methods ; Neural networks ; Neural Networks (Computer) ; Pattern analysis ; Respiration ; Respiration, Artificial - instrumentation ; Respiration, Artificial - methods ; Signal analysis ; Signal processing ; Statistical analysis ; Testing ; Ventilation ; Ventilator Weaning - methods ; Àrees temàtiques de la UPC</subject><ispartof>2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009-01, Vol.2009, p.4343-4346</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,780,885,26973</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/191205$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19963824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arizmendi, Carlos</creatorcontrib><creatorcontrib>Romero, Enrique</creatorcontrib><creatorcontrib>Alquezar, Rene</creatorcontrib><creatorcontrib>Caminal, Pere</creatorcontrib><creatorcontrib>Diaz, Ivan</creatorcontrib><creatorcontrib>Benito, Salvador</creatorcontrib><creatorcontrib>Giraldo, Beatriz F.</creatorcontrib><title>Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks</title><title>2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 23 patients with successful test but that had to be reintubated before 48 hours (group R). Each patient was characterized using 8 time series and 6 statistics extracted from respiratory and cardiac signals. A moving window statistical analysis was applied obtaining for each patient a sequence of patterns of 48 features. Applying a cluster analysis two groups with the majority dataset were obtained. Neural networks were applied to discriminate between patients from groups S, F and R. The best performance obtained was 84.0% of well classified patients using a linear perceptron trained with a feature selection procedure (that selected 19 of the 48 features) and taking as input the main cluster centroid. However, the classification baseline 69.8% could not be improved when using the original set of patterns instead of the centroids to classify the patients.</description><subject>Aplicacions de la informàtica</subject><subject>Aprenentatge automàtic</subject><subject>Bioinformàtica</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>Computers</subject><subject>Data analysis</subject><subject>Data Interpretation, Statistical</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Electrocardiography - methods</subject><subject>Equipment Design</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Informàtica</subject><subject>Intel·ligència artificial</subject><subject>Machine learning</subject><subject>Medical informatics</subject><subject>Medicina</subject><subject>Medicine</subject><subject>Mineria de dades</subject><subject>Models, Statistical</subject><subject>Monitoring, Physiologic - methods</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Pattern analysis</subject><subject>Respiration</subject><subject>Respiration, Artificial - instrumentation</subject><subject>Respiration, Artificial - methods</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Statistical analysis</subject><subject>Testing</subject><subject>Ventilation</subject><subject>Ventilator Weaning - methods</subject><subject>Àrees temàtiques de la UPC</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424432967</isbn><isbn>1424432960</isbn><isbn>9781424432967</isbn><isbn>1424432960</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNpdkcdOxDAQhk0T_QVAQn6BLO7lCEuVQBwAiVvkOLNgSFnZCYi3x7AUicNoyv_Nf5hBaI-SCaXEHl6eXh_fThghdiI5Z1qwJbRrtaGCCcGZVXoZbVIpTSEUlSv_tNWsESsKZfTDBtpK6ZmQ7CXpOtqg1ipumNhE8xM3ONyGLnSPuJ_huRsCdEPCfYffwH2Nhxhck_As9i1uwT_lqXcNfs1caDKf0TF9gr4Z0wARu8417ymkXNS4gzFmuoPhrY8vaQetzbIb7H7nbXR_dno3vSiubs4vp0dXhRdSDYV2mlRQCSKNAs5VpSw3NWWk8o7QmlguhdKeACe61kYZ6SpSaWE9Z0C54duILnx9Gn0ZwUP0bih7F_6az2BEs5La7CzzzsFiZz5WLdTlPIbWxffy51wZ2F8AAQB-5e_n8A-gTXzA</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Arizmendi, Carlos</creator><creator>Romero, Enrique</creator><creator>Alquezar, Rene</creator><creator>Caminal, Pere</creator><creator>Diaz, Ivan</creator><creator>Benito, Salvador</creator><creator>Giraldo, Beatriz F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>XX2</scope></search><sort><creationdate>20090101</creationdate><title>Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks</title><author>Arizmendi, Carlos ; Romero, Enrique ; Alquezar, Rene ; Caminal, Pere ; Diaz, Ivan ; Benito, Salvador ; Giraldo, Beatriz F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-7a70beb40586e336b6938d120bca01d0935467c0e307d78685ab0b749c32e1383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aplicacions de la informàtica</topic><topic>Aprenentatge automàtic</topic><topic>Bioinformàtica</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>Computers</topic><topic>Data analysis</topic><topic>Data Interpretation, Statistical</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Electrocardiography - methods</topic><topic>Equipment Design</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Informàtica</topic><topic>Intel·ligència artificial</topic><topic>Machine learning</topic><topic>Medical informatics</topic><topic>Medicina</topic><topic>Medicine</topic><topic>Mineria de dades</topic><topic>Models, Statistical</topic><topic>Monitoring, Physiologic - methods</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Pattern analysis</topic><topic>Respiration</topic><topic>Respiration, Artificial - instrumentation</topic><topic>Respiration, Artificial - methods</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Statistical analysis</topic><topic>Testing</topic><topic>Ventilation</topic><topic>Ventilator Weaning - methods</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>online_resources</toplevel><creatorcontrib>Arizmendi, Carlos</creatorcontrib><creatorcontrib>Romero, Enrique</creatorcontrib><creatorcontrib>Alquezar, Rene</creatorcontrib><creatorcontrib>Caminal, Pere</creatorcontrib><creatorcontrib>Diaz, Ivan</creatorcontrib><creatorcontrib>Benito, Salvador</creatorcontrib><creatorcontrib>Giraldo, Beatriz F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Recercat</collection><jtitle>2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arizmendi, Carlos</au><au>Romero, Enrique</au><au>Alquezar, Rene</au><au>Caminal, Pere</au><au>Diaz, Ivan</au><au>Benito, Salvador</au><au>Giraldo, Beatriz F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks</atitle><jtitle>2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>2009</volume><spage>4343</spage><epage>4346</epage><pages>4343-4346</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424432967</isbn><isbn>1424432960</isbn><eisbn>9781424432967</eisbn><eisbn>1424432960</eisbn><abstract>The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 23 patients with successful test but that had to be reintubated before 48 hours (group R). Each patient was characterized using 8 time series and 6 statistics extracted from respiratory and cardiac signals. A moving window statistical analysis was applied obtaining for each patient a sequence of patterns of 48 features. Applying a cluster analysis two groups with the majority dataset were obtained. Neural networks were applied to discriminate between patients from groups S, F and R. The best performance obtained was 84.0% of well classified patients using a linear perceptron trained with a feature selection procedure (that selected 19 of the 48 features) and taking as input the main cluster centroid. However, the classification baseline 69.8% could not be improved when using the original set of patterns instead of the centroids to classify the patients.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19963824</pmid><doi>10.1109/IEMBS.2009.5332742</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009-01, Vol.2009, p.4343-4346
issn 1094-687X
1557-170X
1558-4615
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_191205
source Recercat
subjects Aplicacions de la informàtica
Aprenentatge automàtic
Bioinformàtica
Cluster Analysis
Computer Simulation
Computers
Data analysis
Data Interpretation, Statistical
Data mining
Data processing
Electrocardiography - methods
Equipment Design
Hospitals
Humans
Informàtica
Intel·ligència artificial
Machine learning
Medical informatics
Medicina
Medicine
Mineria de dades
Models, Statistical
Monitoring, Physiologic - methods
Neural networks
Neural Networks (Computer)
Pattern analysis
Respiration
Respiration, Artificial - instrumentation
Respiration, Artificial - methods
Signal analysis
Signal processing
Statistical analysis
Testing
Ventilation
Ventilator Weaning - methods
Àrees temàtiques de la UPC
title Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20mining%20of%20patients%20on%20weaning%20trials%20from%20mechanical%20ventilation%20using%20cluster%20analysis%20and%20neural%20networks&rft.jtitle=2009%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Arizmendi,%20Carlos&rft.date=2009-01-01&rft.volume=2009&rft.spage=4343&rft.epage=4346&rft.pages=4343-4346&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424432967&rft.isbn_list=1424432960&rft_id=info:doi/10.1109/IEMBS.2009.5332742&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_191205%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424432967&rft.eisbn_list=1424432960&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19963824&rft_ieee_id=5332742&rfr_iscdi=true