Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks
The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and...
Gespeichert in:
Veröffentlicht in: | 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2009-01, Vol.2009, p.4343-4346 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4346 |
---|---|
container_issue | |
container_start_page | 4343 |
container_title | 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
container_volume | 2009 |
creator | Arizmendi, Carlos Romero, Enrique Alquezar, Rene Caminal, Pere Diaz, Ivan Benito, Salvador Giraldo, Beatriz F. |
description | The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 23 patients with successful test but that had to be reintubated before 48 hours (group R). Each patient was characterized using 8 time series and 6 statistics extracted from respiratory and cardiac signals. A moving window statistical analysis was applied obtaining for each patient a sequence of patterns of 48 features. Applying a cluster analysis two groups with the majority dataset were obtained. Neural networks were applied to discriminate between patients from groups S, F and R. The best performance obtained was 84.0% of well classified patients using a linear perceptron trained with a feature selection procedure (that selected 19 of the 48 features) and taking as input the main cluster centroid. However, the classification baseline 69.8% could not be improved when using the original set of patterns instead of the centroids to classify the patients. |
doi_str_mv | 10.1109/IEMBS.2009.5332742 |
format | Article |
fullrecord | <record><control><sourceid>csuc_XX2</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_191205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5332742</ieee_id><sourcerecordid>oai_recercat_cat_2072_191205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-7a70beb40586e336b6938d120bca01d0935467c0e307d78685ab0b749c32e1383</originalsourceid><addsrcrecordid>eNpdkcdOxDAQhk0T_QVAQn6BLO7lCEuVQBwAiVvkOLNgSFnZCYi3x7AUicNoyv_Nf5hBaI-SCaXEHl6eXh_fThghdiI5Z1qwJbRrtaGCCcGZVXoZbVIpTSEUlSv_tNWsESsKZfTDBtpK6ZmQ7CXpOtqg1ipumNhE8xM3ONyGLnSPuJ_huRsCdEPCfYffwH2Nhxhck_As9i1uwT_lqXcNfs1caDKf0TF9gr4Z0wARu8417ymkXNS4gzFmuoPhrY8vaQetzbIb7H7nbXR_dno3vSiubs4vp0dXhRdSDYV2mlRQCSKNAs5VpSw3NWWk8o7QmlguhdKeACe61kYZ6SpSaWE9Z0C54duILnx9Gn0ZwUP0bih7F_6az2BEs5La7CzzzsFiZz5WLdTlPIbWxffy51wZ2F8AAQB-5e_n8A-gTXzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks</title><source>Recercat</source><creator>Arizmendi, Carlos ; Romero, Enrique ; Alquezar, Rene ; Caminal, Pere ; Diaz, Ivan ; Benito, Salvador ; Giraldo, Beatriz F.</creator><creatorcontrib>Arizmendi, Carlos ; Romero, Enrique ; Alquezar, Rene ; Caminal, Pere ; Diaz, Ivan ; Benito, Salvador ; Giraldo, Beatriz F.</creatorcontrib><description>The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 23 patients with successful test but that had to be reintubated before 48 hours (group R). Each patient was characterized using 8 time series and 6 statistics extracted from respiratory and cardiac signals. A moving window statistical analysis was applied obtaining for each patient a sequence of patterns of 48 features. Applying a cluster analysis two groups with the majority dataset were obtained. Neural networks were applied to discriminate between patients from groups S, F and R. The best performance obtained was 84.0% of well classified patients using a linear perceptron trained with a feature selection procedure (that selected 19 of the 48 features) and taking as input the main cluster centroid. However, the classification baseline 69.8% could not be improved when using the original set of patterns instead of the centroids to classify the patients.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISSN: 1557-170X</identifier><identifier>ISBN: 9781424432967</identifier><identifier>ISBN: 1424432960</identifier><identifier>EISSN: 1558-4615</identifier><identifier>EISBN: 9781424432967</identifier><identifier>EISBN: 1424432960</identifier><identifier>DOI: 10.1109/IEMBS.2009.5332742</identifier><identifier>PMID: 19963824</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aplicacions de la informàtica ; Aprenentatge automàtic ; Bioinformàtica ; Cluster Analysis ; Computer Simulation ; Computers ; Data analysis ; Data Interpretation, Statistical ; Data mining ; Data processing ; Electrocardiography - methods ; Equipment Design ; Hospitals ; Humans ; Informàtica ; Intel·ligència artificial ; Machine learning ; Medical informatics ; Medicina ; Medicine ; Mineria de dades ; Models, Statistical ; Monitoring, Physiologic - methods ; Neural networks ; Neural Networks (Computer) ; Pattern analysis ; Respiration ; Respiration, Artificial - instrumentation ; Respiration, Artificial - methods ; Signal analysis ; Signal processing ; Statistical analysis ; Testing ; Ventilation ; Ventilator Weaning - methods ; Àrees temàtiques de la UPC</subject><ispartof>2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009-01, Vol.2009, p.4343-4346</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,780,885,26973</link.rule.ids><linktorsrc>$$Uhttps://recercat.cat/handle/2072/191205$$EView_record_in_Consorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$FView_record_in_$$GConsorci_de_Serveis_Universitaris_de_Catalunya_(CSUC)$$Hfree_for_read</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19963824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arizmendi, Carlos</creatorcontrib><creatorcontrib>Romero, Enrique</creatorcontrib><creatorcontrib>Alquezar, Rene</creatorcontrib><creatorcontrib>Caminal, Pere</creatorcontrib><creatorcontrib>Diaz, Ivan</creatorcontrib><creatorcontrib>Benito, Salvador</creatorcontrib><creatorcontrib>Giraldo, Beatriz F.</creatorcontrib><title>Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks</title><title>2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><description>The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 23 patients with successful test but that had to be reintubated before 48 hours (group R). Each patient was characterized using 8 time series and 6 statistics extracted from respiratory and cardiac signals. A moving window statistical analysis was applied obtaining for each patient a sequence of patterns of 48 features. Applying a cluster analysis two groups with the majority dataset were obtained. Neural networks were applied to discriminate between patients from groups S, F and R. The best performance obtained was 84.0% of well classified patients using a linear perceptron trained with a feature selection procedure (that selected 19 of the 48 features) and taking as input the main cluster centroid. However, the classification baseline 69.8% could not be improved when using the original set of patterns instead of the centroids to classify the patients.</description><subject>Aplicacions de la informàtica</subject><subject>Aprenentatge automàtic</subject><subject>Bioinformàtica</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>Computers</subject><subject>Data analysis</subject><subject>Data Interpretation, Statistical</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Electrocardiography - methods</subject><subject>Equipment Design</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Informàtica</subject><subject>Intel·ligència artificial</subject><subject>Machine learning</subject><subject>Medical informatics</subject><subject>Medicina</subject><subject>Medicine</subject><subject>Mineria de dades</subject><subject>Models, Statistical</subject><subject>Monitoring, Physiologic - methods</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Pattern analysis</subject><subject>Respiration</subject><subject>Respiration, Artificial - instrumentation</subject><subject>Respiration, Artificial - methods</subject><subject>Signal analysis</subject><subject>Signal processing</subject><subject>Statistical analysis</subject><subject>Testing</subject><subject>Ventilation</subject><subject>Ventilator Weaning - methods</subject><subject>Àrees temàtiques de la UPC</subject><issn>1094-687X</issn><issn>1557-170X</issn><issn>1558-4615</issn><isbn>9781424432967</isbn><isbn>1424432960</isbn><isbn>9781424432967</isbn><isbn>1424432960</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>XX2</sourceid><recordid>eNpdkcdOxDAQhk0T_QVAQn6BLO7lCEuVQBwAiVvkOLNgSFnZCYi3x7AUicNoyv_Nf5hBaI-SCaXEHl6eXh_fThghdiI5Z1qwJbRrtaGCCcGZVXoZbVIpTSEUlSv_tNWsESsKZfTDBtpK6ZmQ7CXpOtqg1ipumNhE8xM3ONyGLnSPuJ_huRsCdEPCfYffwH2Nhxhck_As9i1uwT_lqXcNfs1caDKf0TF9gr4Z0wARu8417ymkXNS4gzFmuoPhrY8vaQetzbIb7H7nbXR_dno3vSiubs4vp0dXhRdSDYV2mlRQCSKNAs5VpSw3NWWk8o7QmlguhdKeACe61kYZ6SpSaWE9Z0C54duILnx9Gn0ZwUP0bih7F_6az2BEs5La7CzzzsFiZz5WLdTlPIbWxffy51wZ2F8AAQB-5e_n8A-gTXzA</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Arizmendi, Carlos</creator><creator>Romero, Enrique</creator><creator>Alquezar, Rene</creator><creator>Caminal, Pere</creator><creator>Diaz, Ivan</creator><creator>Benito, Salvador</creator><creator>Giraldo, Beatriz F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>XX2</scope></search><sort><creationdate>20090101</creationdate><title>Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks</title><author>Arizmendi, Carlos ; Romero, Enrique ; Alquezar, Rene ; Caminal, Pere ; Diaz, Ivan ; Benito, Salvador ; Giraldo, Beatriz F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-7a70beb40586e336b6938d120bca01d0935467c0e307d78685ab0b749c32e1383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Aplicacions de la informàtica</topic><topic>Aprenentatge automàtic</topic><topic>Bioinformàtica</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>Computers</topic><topic>Data analysis</topic><topic>Data Interpretation, Statistical</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Electrocardiography - methods</topic><topic>Equipment Design</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Informàtica</topic><topic>Intel·ligència artificial</topic><topic>Machine learning</topic><topic>Medical informatics</topic><topic>Medicina</topic><topic>Medicine</topic><topic>Mineria de dades</topic><topic>Models, Statistical</topic><topic>Monitoring, Physiologic - methods</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Pattern analysis</topic><topic>Respiration</topic><topic>Respiration, Artificial - instrumentation</topic><topic>Respiration, Artificial - methods</topic><topic>Signal analysis</topic><topic>Signal processing</topic><topic>Statistical analysis</topic><topic>Testing</topic><topic>Ventilation</topic><topic>Ventilator Weaning - methods</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>online_resources</toplevel><creatorcontrib>Arizmendi, Carlos</creatorcontrib><creatorcontrib>Romero, Enrique</creatorcontrib><creatorcontrib>Alquezar, Rene</creatorcontrib><creatorcontrib>Caminal, Pere</creatorcontrib><creatorcontrib>Diaz, Ivan</creatorcontrib><creatorcontrib>Benito, Salvador</creatorcontrib><creatorcontrib>Giraldo, Beatriz F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Recercat</collection><jtitle>2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arizmendi, Carlos</au><au>Romero, Enrique</au><au>Alquezar, Rene</au><au>Caminal, Pere</au><au>Diaz, Ivan</au><au>Benito, Salvador</au><au>Giraldo, Beatriz F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks</atitle><jtitle>2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society</jtitle><stitle>IEMBS</stitle><addtitle>Conf Proc IEEE Eng Med Biol Soc</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>2009</volume><spage>4343</spage><epage>4346</epage><pages>4343-4346</pages><issn>1094-687X</issn><issn>1557-170X</issn><eissn>1558-4615</eissn><isbn>9781424432967</isbn><isbn>1424432960</isbn><eisbn>9781424432967</eisbn><eisbn>1424432960</eisbn><abstract>The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 23 patients with successful test but that had to be reintubated before 48 hours (group R). Each patient was characterized using 8 time series and 6 statistics extracted from respiratory and cardiac signals. A moving window statistical analysis was applied obtaining for each patient a sequence of patterns of 48 features. Applying a cluster analysis two groups with the majority dataset were obtained. Neural networks were applied to discriminate between patients from groups S, F and R. The best performance obtained was 84.0% of well classified patients using a linear perceptron trained with a feature selection procedure (that selected 19 of the 48 features) and taking as input the main cluster centroid. However, the classification baseline 69.8% could not be improved when using the original set of patterns instead of the centroids to classify the patients.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19963824</pmid><doi>10.1109/IEMBS.2009.5332742</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1094-687X |
ispartof | 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009-01, Vol.2009, p.4343-4346 |
issn | 1094-687X 1557-170X 1558-4615 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_191205 |
source | Recercat |
subjects | Aplicacions de la informàtica Aprenentatge automàtic Bioinformàtica Cluster Analysis Computer Simulation Computers Data analysis Data Interpretation, Statistical Data mining Data processing Electrocardiography - methods Equipment Design Hospitals Humans Informàtica Intel·ligència artificial Machine learning Medical informatics Medicina Medicine Mineria de dades Models, Statistical Monitoring, Physiologic - methods Neural networks Neural Networks (Computer) Pattern analysis Respiration Respiration, Artificial - instrumentation Respiration, Artificial - methods Signal analysis Signal processing Statistical analysis Testing Ventilation Ventilator Weaning - methods Àrees temàtiques de la UPC |
title | Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_XX2&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20mining%20of%20patients%20on%20weaning%20trials%20from%20mechanical%20ventilation%20using%20cluster%20analysis%20and%20neural%20networks&rft.jtitle=2009%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Arizmendi,%20Carlos&rft.date=2009-01-01&rft.volume=2009&rft.spage=4343&rft.epage=4346&rft.pages=4343-4346&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9781424432967&rft.isbn_list=1424432960&rft_id=info:doi/10.1109/IEMBS.2009.5332742&rft_dat=%3Ccsuc_XX2%3Eoai_recercat_cat_2072_191205%3C/csuc_XX2%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424432967&rft.eisbn_list=1424432960&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19963824&rft_ieee_id=5332742&rfr_iscdi=true |