Performance assessment of a novel fault diagnosis system based on support vector machines

Fault diagnosis in chemical plants is reviewed and discussed, while an innovative data-based fault diagnosis system (FDS) approach is proposed. The use of support vector machines (SVM) is considered for their simpler design and implementation, and for allowing the better handling of complex and larg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2009-01, Vol.33 (1), p.244-255
Hauptverfasser: Yélamos, Ignacio, Escudero, Gerard, Graells, Moisès, Puigjaner, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 1
container_start_page 244
container_title Computers & chemical engineering
container_volume 33
creator Yélamos, Ignacio
Escudero, Gerard
Graells, Moisès
Puigjaner, Luis
description Fault diagnosis in chemical plants is reviewed and discussed, while an innovative data-based fault diagnosis system (FDS) approach is proposed. The use of support vector machines (SVM) is considered for their simpler design and implementation, and for allowing the better handling of complex and large data sets. In order to compare results with previously reported works, a standard case study such as the Tennessee Eastman (TE) process benchmark is considered. SVM achieves consistent and promising results. However, the difficulties arising when comparing SVM with previously reported results reveals the need for a systematic procedure for contrasting the performance of different FDS. Hence, general performance assessment indexes based on precision and recall of each FDS are proposed and used. In this sense, this study provides a data set and evaluation measures that could be used as a framework for future comparisons.
doi_str_mv 10.1016/j.compchemeng.2008.08.008
format Article
fullrecord <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_189372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135408001671</els_id><sourcerecordid>oai_recercat_cat_2072_189372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c2fead59700c2d128012403a62a2a64d36b20e37a71405743a84bce7903ff8673</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouH78h_gDuk6SbpMeZfELBD3owVOYTadrlm2zZLoL_ntbFPQozDDM4XmHeYS4UjBXoKrrzTykbhc-qKN-PdcAbj4VuCMxU86aojR2cSxmALUrlFmUp-KMeQMAunRuJt5fKLcpd9gHkshMzGPSIFMrUfbpQFvZ4n47yCbiuk8cWfInD9TJFTI1MvWS97tdyoM8UBhSlh2Gj9gTX4iTFrdMlz_zXLzd3b4uH4qn5_vH5c1TEUxlhiLolrBZ1BYg6EZpB0qXYLDSqLEqG1OtNJCxaFUJC1sadOUqkK3BtK2rrDkX6js38D74TIFywMEnjL_L1Bqs9srVxuqRqX-YnJgztX6XY4f50yvwk1e_8X-8-smrnwrcyC6_WRqfOkTKnkOkUV8Tx3uDb1L8R8oXqbmIRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance assessment of a novel fault diagnosis system based on support vector machines</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Yélamos, Ignacio ; Escudero, Gerard ; Graells, Moisès ; Puigjaner, Luis</creator><creatorcontrib>Yélamos, Ignacio ; Escudero, Gerard ; Graells, Moisès ; Puigjaner, Luis</creatorcontrib><description>Fault diagnosis in chemical plants is reviewed and discussed, while an innovative data-based fault diagnosis system (FDS) approach is proposed. The use of support vector machines (SVM) is considered for their simpler design and implementation, and for allowing the better handling of complex and large data sets. In order to compare results with previously reported works, a standard case study such as the Tennessee Eastman (TE) process benchmark is considered. SVM achieves consistent and promising results. However, the difficulties arising when comparing SVM with previously reported results reveals the need for a systematic procedure for contrasting the performance of different FDS. Hence, general performance assessment indexes based on precision and recall of each FDS are proposed and used. In this sense, this study provides a data set and evaluation measures that could be used as a framework for future comparisons.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2008.08.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical plants ; Direcció d'operacions ; Economia i organització d'empreses ; Enginyeria química ; Fault diagnosis ; Indústria dels processos químics ; Indústria química ; Machine learning ; Management ; Plantes de fabricació ; Productivitat del treball ; Support vector machines ; Àrees temàtiques de la UPC</subject><ispartof>Computers &amp; chemical engineering, 2009-01, Vol.33 (1), p.244-255</ispartof><rights>2008 Elsevier Ltd</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c2fead59700c2d128012403a62a2a64d36b20e37a71405743a84bce7903ff8673</citedby><cites>FETCH-LOGICAL-c363t-c2fead59700c2d128012403a62a2a64d36b20e37a71405743a84bce7903ff8673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098135408001671$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yélamos, Ignacio</creatorcontrib><creatorcontrib>Escudero, Gerard</creatorcontrib><creatorcontrib>Graells, Moisès</creatorcontrib><creatorcontrib>Puigjaner, Luis</creatorcontrib><title>Performance assessment of a novel fault diagnosis system based on support vector machines</title><title>Computers &amp; chemical engineering</title><description>Fault diagnosis in chemical plants is reviewed and discussed, while an innovative data-based fault diagnosis system (FDS) approach is proposed. The use of support vector machines (SVM) is considered for their simpler design and implementation, and for allowing the better handling of complex and large data sets. In order to compare results with previously reported works, a standard case study such as the Tennessee Eastman (TE) process benchmark is considered. SVM achieves consistent and promising results. However, the difficulties arising when comparing SVM with previously reported results reveals the need for a systematic procedure for contrasting the performance of different FDS. Hence, general performance assessment indexes based on precision and recall of each FDS are proposed and used. In this sense, this study provides a data set and evaluation measures that could be used as a framework for future comparisons.</description><subject>Chemical plants</subject><subject>Direcció d'operacions</subject><subject>Economia i organització d'empreses</subject><subject>Enginyeria química</subject><subject>Fault diagnosis</subject><subject>Indústria dels processos químics</subject><subject>Indústria química</subject><subject>Machine learning</subject><subject>Management</subject><subject>Plantes de fabricació</subject><subject>Productivitat del treball</subject><subject>Support vector machines</subject><subject>Àrees temàtiques de la UPC</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqNkE1LxDAQhoMouH78h_gDuk6SbpMeZfELBD3owVOYTadrlm2zZLoL_ntbFPQozDDM4XmHeYS4UjBXoKrrzTykbhc-qKN-PdcAbj4VuCMxU86aojR2cSxmALUrlFmUp-KMeQMAunRuJt5fKLcpd9gHkshMzGPSIFMrUfbpQFvZ4n47yCbiuk8cWfInD9TJFTI1MvWS97tdyoM8UBhSlh2Gj9gTX4iTFrdMlz_zXLzd3b4uH4qn5_vH5c1TEUxlhiLolrBZ1BYg6EZpB0qXYLDSqLEqG1OtNJCxaFUJC1sadOUqkK3BtK2rrDkX6js38D74TIFywMEnjL_L1Bqs9srVxuqRqX-YnJgztX6XY4f50yvwk1e_8X-8-smrnwrcyC6_WRqfOkTKnkOkUV8Tx3uDb1L8R8oXqbmIRw</recordid><startdate>20090113</startdate><enddate>20090113</enddate><creator>Yélamos, Ignacio</creator><creator>Escudero, Gerard</creator><creator>Graells, Moisès</creator><creator>Puigjaner, Luis</creator><general>Elsevier Ltd</general><general>Pergamon Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20090113</creationdate><title>Performance assessment of a novel fault diagnosis system based on support vector machines</title><author>Yélamos, Ignacio ; Escudero, Gerard ; Graells, Moisès ; Puigjaner, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c2fead59700c2d128012403a62a2a64d36b20e37a71405743a84bce7903ff8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemical plants</topic><topic>Direcció d'operacions</topic><topic>Economia i organització d'empreses</topic><topic>Enginyeria química</topic><topic>Fault diagnosis</topic><topic>Indústria dels processos químics</topic><topic>Indústria química</topic><topic>Machine learning</topic><topic>Management</topic><topic>Plantes de fabricació</topic><topic>Productivitat del treball</topic><topic>Support vector machines</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yélamos, Ignacio</creatorcontrib><creatorcontrib>Escudero, Gerard</creatorcontrib><creatorcontrib>Graells, Moisès</creatorcontrib><creatorcontrib>Puigjaner, Luis</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yélamos, Ignacio</au><au>Escudero, Gerard</au><au>Graells, Moisès</au><au>Puigjaner, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance assessment of a novel fault diagnosis system based on support vector machines</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2009-01-13</date><risdate>2009</risdate><volume>33</volume><issue>1</issue><spage>244</spage><epage>255</epage><pages>244-255</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>Fault diagnosis in chemical plants is reviewed and discussed, while an innovative data-based fault diagnosis system (FDS) approach is proposed. The use of support vector machines (SVM) is considered for their simpler design and implementation, and for allowing the better handling of complex and large data sets. In order to compare results with previously reported works, a standard case study such as the Tennessee Eastman (TE) process benchmark is considered. SVM achieves consistent and promising results. However, the difficulties arising when comparing SVM with previously reported results reveals the need for a systematic procedure for contrasting the performance of different FDS. Hence, general performance assessment indexes based on precision and recall of each FDS are proposed and used. In this sense, this study provides a data set and evaluation measures that could be used as a framework for future comparisons.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2008.08.008</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2009-01, Vol.33 (1), p.244-255
issn 0098-1354
1873-4375
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_189372
source Recercat; Elsevier ScienceDirect Journals
subjects Chemical plants
Direcció d'operacions
Economia i organització d'empreses
Enginyeria química
Fault diagnosis
Indústria dels processos químics
Indústria química
Machine learning
Management
Plantes de fabricació
Productivitat del treball
Support vector machines
Àrees temàtiques de la UPC
title Performance assessment of a novel fault diagnosis system based on support vector machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20assessment%20of%20a%20novel%20fault%20diagnosis%20system%20based%20on%20support%20vector%20machines&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Y%C3%A9lamos,%20Ignacio&rft.date=2009-01-13&rft.volume=33&rft.issue=1&rft.spage=244&rft.epage=255&rft.pages=244-255&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2008.08.008&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_189372%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0098135408001671&rfr_iscdi=true