Performance assessment of a novel fault diagnosis system based on support vector machines
Fault diagnosis in chemical plants is reviewed and discussed, while an innovative data-based fault diagnosis system (FDS) approach is proposed. The use of support vector machines (SVM) is considered for their simpler design and implementation, and for allowing the better handling of complex and larg...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 2009-01, Vol.33 (1), p.244-255 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 1 |
container_start_page | 244 |
container_title | Computers & chemical engineering |
container_volume | 33 |
creator | Yélamos, Ignacio Escudero, Gerard Graells, Moisès Puigjaner, Luis |
description | Fault diagnosis in chemical plants is reviewed and discussed, while an innovative data-based fault diagnosis system (FDS) approach is proposed. The use of support vector machines (SVM) is considered for their simpler design and implementation, and for allowing the better handling of complex and large data sets. In order to compare results with previously reported works, a standard case study such as the Tennessee Eastman (TE) process benchmark is considered. SVM achieves consistent and promising results. However, the difficulties arising when comparing SVM with previously reported results reveals the need for a systematic procedure for contrasting the performance of different FDS. Hence, general performance assessment indexes based on precision and recall of each FDS are proposed and used. In this sense, this study provides a data set and evaluation measures that could be used as a framework for future comparisons. |
doi_str_mv | 10.1016/j.compchemeng.2008.08.008 |
format | Article |
fullrecord | <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_189372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135408001671</els_id><sourcerecordid>oai_recercat_cat_2072_189372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c2fead59700c2d128012403a62a2a64d36b20e37a71405743a84bce7903ff8673</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouH78h_gDuk6SbpMeZfELBD3owVOYTadrlm2zZLoL_ntbFPQozDDM4XmHeYS4UjBXoKrrzTykbhc-qKN-PdcAbj4VuCMxU86aojR2cSxmALUrlFmUp-KMeQMAunRuJt5fKLcpd9gHkshMzGPSIFMrUfbpQFvZ4n47yCbiuk8cWfInD9TJFTI1MvWS97tdyoM8UBhSlh2Gj9gTX4iTFrdMlz_zXLzd3b4uH4qn5_vH5c1TEUxlhiLolrBZ1BYg6EZpB0qXYLDSqLEqG1OtNJCxaFUJC1sadOUqkK3BtK2rrDkX6js38D74TIFywMEnjL_L1Bqs9srVxuqRqX-YnJgztX6XY4f50yvwk1e_8X-8-smrnwrcyC6_WRqfOkTKnkOkUV8Tx3uDb1L8R8oXqbmIRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance assessment of a novel fault diagnosis system based on support vector machines</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Yélamos, Ignacio ; Escudero, Gerard ; Graells, Moisès ; Puigjaner, Luis</creator><creatorcontrib>Yélamos, Ignacio ; Escudero, Gerard ; Graells, Moisès ; Puigjaner, Luis</creatorcontrib><description>Fault diagnosis in chemical plants is reviewed and discussed, while an innovative data-based fault diagnosis system (FDS) approach is proposed. The use of support vector machines (SVM) is considered for their simpler design and implementation, and for allowing the better handling of complex and large data sets. In order to compare results with previously reported works, a standard case study such as the Tennessee Eastman (TE) process benchmark is considered. SVM achieves consistent and promising results. However, the difficulties arising when comparing SVM with previously reported results reveals the need for a systematic procedure for contrasting the performance of different FDS. Hence, general performance assessment indexes based on precision and recall of each FDS are proposed and used. In this sense, this study provides a data set and evaluation measures that could be used as a framework for future comparisons.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2008.08.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical plants ; Direcció d'operacions ; Economia i organització d'empreses ; Enginyeria química ; Fault diagnosis ; Indústria dels processos químics ; Indústria química ; Machine learning ; Management ; Plantes de fabricació ; Productivitat del treball ; Support vector machines ; Àrees temàtiques de la UPC</subject><ispartof>Computers & chemical engineering, 2009-01, Vol.33 (1), p.244-255</ispartof><rights>2008 Elsevier Ltd</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c2fead59700c2d128012403a62a2a64d36b20e37a71405743a84bce7903ff8673</citedby><cites>FETCH-LOGICAL-c363t-c2fead59700c2d128012403a62a2a64d36b20e37a71405743a84bce7903ff8673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098135408001671$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yélamos, Ignacio</creatorcontrib><creatorcontrib>Escudero, Gerard</creatorcontrib><creatorcontrib>Graells, Moisès</creatorcontrib><creatorcontrib>Puigjaner, Luis</creatorcontrib><title>Performance assessment of a novel fault diagnosis system based on support vector machines</title><title>Computers & chemical engineering</title><description>Fault diagnosis in chemical plants is reviewed and discussed, while an innovative data-based fault diagnosis system (FDS) approach is proposed. The use of support vector machines (SVM) is considered for their simpler design and implementation, and for allowing the better handling of complex and large data sets. In order to compare results with previously reported works, a standard case study such as the Tennessee Eastman (TE) process benchmark is considered. SVM achieves consistent and promising results. However, the difficulties arising when comparing SVM with previously reported results reveals the need for a systematic procedure for contrasting the performance of different FDS. Hence, general performance assessment indexes based on precision and recall of each FDS are proposed and used. In this sense, this study provides a data set and evaluation measures that could be used as a framework for future comparisons.</description><subject>Chemical plants</subject><subject>Direcció d'operacions</subject><subject>Economia i organització d'empreses</subject><subject>Enginyeria química</subject><subject>Fault diagnosis</subject><subject>Indústria dels processos químics</subject><subject>Indústria química</subject><subject>Machine learning</subject><subject>Management</subject><subject>Plantes de fabricació</subject><subject>Productivitat del treball</subject><subject>Support vector machines</subject><subject>Àrees temàtiques de la UPC</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqNkE1LxDAQhoMouH78h_gDuk6SbpMeZfELBD3owVOYTadrlm2zZLoL_ntbFPQozDDM4XmHeYS4UjBXoKrrzTykbhc-qKN-PdcAbj4VuCMxU86aojR2cSxmALUrlFmUp-KMeQMAunRuJt5fKLcpd9gHkshMzGPSIFMrUfbpQFvZ4n47yCbiuk8cWfInD9TJFTI1MvWS97tdyoM8UBhSlh2Gj9gTX4iTFrdMlz_zXLzd3b4uH4qn5_vH5c1TEUxlhiLolrBZ1BYg6EZpB0qXYLDSqLEqG1OtNJCxaFUJC1sadOUqkK3BtK2rrDkX6js38D74TIFywMEnjL_L1Bqs9srVxuqRqX-YnJgztX6XY4f50yvwk1e_8X-8-smrnwrcyC6_WRqfOkTKnkOkUV8Tx3uDb1L8R8oXqbmIRw</recordid><startdate>20090113</startdate><enddate>20090113</enddate><creator>Yélamos, Ignacio</creator><creator>Escudero, Gerard</creator><creator>Graells, Moisès</creator><creator>Puigjaner, Luis</creator><general>Elsevier Ltd</general><general>Pergamon Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20090113</creationdate><title>Performance assessment of a novel fault diagnosis system based on support vector machines</title><author>Yélamos, Ignacio ; Escudero, Gerard ; Graells, Moisès ; Puigjaner, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c2fead59700c2d128012403a62a2a64d36b20e37a71405743a84bce7903ff8673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemical plants</topic><topic>Direcció d'operacions</topic><topic>Economia i organització d'empreses</topic><topic>Enginyeria química</topic><topic>Fault diagnosis</topic><topic>Indústria dels processos químics</topic><topic>Indústria química</topic><topic>Machine learning</topic><topic>Management</topic><topic>Plantes de fabricació</topic><topic>Productivitat del treball</topic><topic>Support vector machines</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yélamos, Ignacio</creatorcontrib><creatorcontrib>Escudero, Gerard</creatorcontrib><creatorcontrib>Graells, Moisès</creatorcontrib><creatorcontrib>Puigjaner, Luis</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Computers & chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yélamos, Ignacio</au><au>Escudero, Gerard</au><au>Graells, Moisès</au><au>Puigjaner, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance assessment of a novel fault diagnosis system based on support vector machines</atitle><jtitle>Computers & chemical engineering</jtitle><date>2009-01-13</date><risdate>2009</risdate><volume>33</volume><issue>1</issue><spage>244</spage><epage>255</epage><pages>244-255</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>Fault diagnosis in chemical plants is reviewed and discussed, while an innovative data-based fault diagnosis system (FDS) approach is proposed. The use of support vector machines (SVM) is considered for their simpler design and implementation, and for allowing the better handling of complex and large data sets. In order to compare results with previously reported works, a standard case study such as the Tennessee Eastman (TE) process benchmark is considered. SVM achieves consistent and promising results. However, the difficulties arising when comparing SVM with previously reported results reveals the need for a systematic procedure for contrasting the performance of different FDS. Hence, general performance assessment indexes based on precision and recall of each FDS are proposed and used. In this sense, this study provides a data set and evaluation measures that could be used as a framework for future comparisons.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2008.08.008</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-1354 |
ispartof | Computers & chemical engineering, 2009-01, Vol.33 (1), p.244-255 |
issn | 0098-1354 1873-4375 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_189372 |
source | Recercat; Elsevier ScienceDirect Journals |
subjects | Chemical plants Direcció d'operacions Economia i organització d'empreses Enginyeria química Fault diagnosis Indústria dels processos químics Indústria química Machine learning Management Plantes de fabricació Productivitat del treball Support vector machines Àrees temàtiques de la UPC |
title | Performance assessment of a novel fault diagnosis system based on support vector machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20assessment%20of%20a%20novel%20fault%20diagnosis%20system%20based%20on%20support%20vector%20machines&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Y%C3%A9lamos,%20Ignacio&rft.date=2009-01-13&rft.volume=33&rft.issue=1&rft.spage=244&rft.epage=255&rft.pages=244-255&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2008.08.008&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_189372%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0098135408001671&rfr_iscdi=true |