Enhanced plant fault diagnosis based on the characterization of transient stages
This paper introduces a data-based fault diagnosis system that includes an enhanced characterization of faults during transient stages. First, data under abnormal operating conditions (AOC) is projected onto a reference PCA model constructed with data under normal operating conditions (NOC). T 2 and...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 2012-02, Vol.37, p.200-213 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | |
container_start_page | 200 |
container_title | Computers & chemical engineering |
container_volume | 37 |
creator | Monroy, Isaac Benitez, Raul Escudero, Gerard Graells, Moisès |
description | This paper introduces a data-based fault diagnosis system that includes an enhanced characterization of faults during transient stages. First, data under abnormal operating conditions (AOC) is projected onto a reference PCA model constructed with data under normal operating conditions (NOC).
T
2 and
Q-statistic measures of this first PCA model are both used to detect the fault and to estimate the duration and delay of its transient evolution. After a dimensionality reduction, a second NOC PCA model is used to process data before diagnosing the faults by standard classification methods such as Artificial Neural Networks (ANN) or Support Vector Machines (SVM). A quantitative validation of the procedure has been carried out using simulated on-line data sets of the Tennessee Eastman Process (TEP). Results indicate that the incorporation of transient data in models improves the overall diagnosis performance, regardless of the particular choice between the statistical methods or the classification methods. |
doi_str_mv | 10.1016/j.compchemeng.2011.12.006 |
format | Article |
fullrecord | <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_184867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135411003437</els_id><sourcerecordid>oai_recercat_cat_2072_184867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-bc6c9d48935ca2969550f82d545d6a6618434a49c972f04448c710b2139e7bdc3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD2HBMsGvJPYSVeUhIcEC1tZk4jSu0qSyXST4ely1ApYsLMv2nDueQ8g1owWjrLpdFzhtttjbjR1XBaeMFYwXlFYnZMZULXIp6vKUzCjVKmeilOfkIoQ1pZRLpWbkdTn2MKJts-0AY8w62A0xax2sxim4kDUQ0ts0ZrG3GfbgAaP17guiS5dTl0UPY3A2oSHCyoZLctbBEOzVcZ-T9_vl2-Ixf355eFrcPecoBY15gxXqViotSgSuK12WtFO8LWXZVlBVTEkhQWrUNe-olFJhzWjDmdC2bloUc8IOuRh2aLxF6xGimcD9HvaL05qblKaqOjH6yPgpBG87s_VuA_7TMGr2Os3a_NFp9joN4ybpTOzNgd1CQBi6NDa68BPAS6kEZzrVLQ51Ng3_4aw3AZOeZNilf0XTTu4f3b4BQkWRNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced plant fault diagnosis based on the characterization of transient stages</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Monroy, Isaac ; Benitez, Raul ; Escudero, Gerard ; Graells, Moisès</creator><creatorcontrib>Monroy, Isaac ; Benitez, Raul ; Escudero, Gerard ; Graells, Moisès</creatorcontrib><description>This paper introduces a data-based fault diagnosis system that includes an enhanced characterization of faults during transient stages. First, data under abnormal operating conditions (AOC) is projected onto a reference PCA model constructed with data under normal operating conditions (NOC).
T
2 and
Q-statistic measures of this first PCA model are both used to detect the fault and to estimate the duration and delay of its transient evolution. After a dimensionality reduction, a second NOC PCA model is used to process data before diagnosing the faults by standard classification methods such as Artificial Neural Networks (ANN) or Support Vector Machines (SVM). A quantitative validation of the procedure has been carried out using simulated on-line data sets of the Tennessee Eastman Process (TEP). Results indicate that the incorporation of transient data in models improves the overall diagnosis performance, regardless of the particular choice between the statistical methods or the classification methods.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2011.12.006</identifier><identifier>CODEN: CCENDW</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>ANN ; Aplicacions de la informàtica ; Aplicacions informàtiques a la física i l‘enginyeria ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Control theory. Systems ; Data processing. List processing. Character string processing ; Diagnòstic ; Exact sciences and technology ; Industrial metrology. Testing ; Informàtica ; Mechanical engineering. Machine design ; Memory organisation. Data processing ; Modelling and identification ; On-line fault diagnosis ; PCA ; Software ; SVM ; Tennessee Eastman Process ; Transient stages ; Àrees temàtiques de la UPC</subject><ispartof>Computers & chemical engineering, 2012-02, Vol.37, p.200-213</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-bc6c9d48935ca2969550f82d545d6a6618434a49c972f04448c710b2139e7bdc3</citedby><cites>FETCH-LOGICAL-c430t-bc6c9d48935ca2969550f82d545d6a6618434a49c972f04448c710b2139e7bdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098135411003437$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25483219$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Monroy, Isaac</creatorcontrib><creatorcontrib>Benitez, Raul</creatorcontrib><creatorcontrib>Escudero, Gerard</creatorcontrib><creatorcontrib>Graells, Moisès</creatorcontrib><title>Enhanced plant fault diagnosis based on the characterization of transient stages</title><title>Computers & chemical engineering</title><description>This paper introduces a data-based fault diagnosis system that includes an enhanced characterization of faults during transient stages. First, data under abnormal operating conditions (AOC) is projected onto a reference PCA model constructed with data under normal operating conditions (NOC).
T
2 and
Q-statistic measures of this first PCA model are both used to detect the fault and to estimate the duration and delay of its transient evolution. After a dimensionality reduction, a second NOC PCA model is used to process data before diagnosing the faults by standard classification methods such as Artificial Neural Networks (ANN) or Support Vector Machines (SVM). A quantitative validation of the procedure has been carried out using simulated on-line data sets of the Tennessee Eastman Process (TEP). Results indicate that the incorporation of transient data in models improves the overall diagnosis performance, regardless of the particular choice between the statistical methods or the classification methods.</description><subject>ANN</subject><subject>Aplicacions de la informàtica</subject><subject>Aplicacions informàtiques a la física i l‘enginyeria</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Control theory. Systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Diagnòstic</subject><subject>Exact sciences and technology</subject><subject>Industrial metrology. Testing</subject><subject>Informàtica</subject><subject>Mechanical engineering. Machine design</subject><subject>Memory organisation. Data processing</subject><subject>Modelling and identification</subject><subject>On-line fault diagnosis</subject><subject>PCA</subject><subject>Software</subject><subject>SVM</subject><subject>Tennessee Eastman Process</subject><subject>Transient stages</subject><subject>Àrees temàtiques de la UPC</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqNkMtOwzAQRS0EEqXwD2HBMsGvJPYSVeUhIcEC1tZk4jSu0qSyXST4ely1ApYsLMv2nDueQ8g1owWjrLpdFzhtttjbjR1XBaeMFYwXlFYnZMZULXIp6vKUzCjVKmeilOfkIoQ1pZRLpWbkdTn2MKJts-0AY8w62A0xax2sxim4kDUQ0ts0ZrG3GfbgAaP17guiS5dTl0UPY3A2oSHCyoZLctbBEOzVcZ-T9_vl2-Ixf355eFrcPecoBY15gxXqViotSgSuK12WtFO8LWXZVlBVTEkhQWrUNe-olFJhzWjDmdC2bloUc8IOuRh2aLxF6xGimcD9HvaL05qblKaqOjH6yPgpBG87s_VuA_7TMGr2Os3a_NFp9joN4ybpTOzNgd1CQBi6NDa68BPAS6kEZzrVLQ51Ng3_4aw3AZOeZNilf0XTTu4f3b4BQkWRNQ</recordid><startdate>20120210</startdate><enddate>20120210</enddate><creator>Monroy, Isaac</creator><creator>Benitez, Raul</creator><creator>Escudero, Gerard</creator><creator>Graells, Moisès</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20120210</creationdate><title>Enhanced plant fault diagnosis based on the characterization of transient stages</title><author>Monroy, Isaac ; Benitez, Raul ; Escudero, Gerard ; Graells, Moisès</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-bc6c9d48935ca2969550f82d545d6a6618434a49c972f04448c710b2139e7bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ANN</topic><topic>Aplicacions de la informàtica</topic><topic>Aplicacions informàtiques a la física i l‘enginyeria</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Control theory. Systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Diagnòstic</topic><topic>Exact sciences and technology</topic><topic>Industrial metrology. Testing</topic><topic>Informàtica</topic><topic>Mechanical engineering. Machine design</topic><topic>Memory organisation. Data processing</topic><topic>Modelling and identification</topic><topic>On-line fault diagnosis</topic><topic>PCA</topic><topic>Software</topic><topic>SVM</topic><topic>Tennessee Eastman Process</topic><topic>Transient stages</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monroy, Isaac</creatorcontrib><creatorcontrib>Benitez, Raul</creatorcontrib><creatorcontrib>Escudero, Gerard</creatorcontrib><creatorcontrib>Graells, Moisès</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Computers & chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monroy, Isaac</au><au>Benitez, Raul</au><au>Escudero, Gerard</au><au>Graells, Moisès</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced plant fault diagnosis based on the characterization of transient stages</atitle><jtitle>Computers & chemical engineering</jtitle><date>2012-02-10</date><risdate>2012</risdate><volume>37</volume><spage>200</spage><epage>213</epage><pages>200-213</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><coden>CCENDW</coden><abstract>This paper introduces a data-based fault diagnosis system that includes an enhanced characterization of faults during transient stages. First, data under abnormal operating conditions (AOC) is projected onto a reference PCA model constructed with data under normal operating conditions (NOC).
T
2 and
Q-statistic measures of this first PCA model are both used to detect the fault and to estimate the duration and delay of its transient evolution. After a dimensionality reduction, a second NOC PCA model is used to process data before diagnosing the faults by standard classification methods such as Artificial Neural Networks (ANN) or Support Vector Machines (SVM). A quantitative validation of the procedure has been carried out using simulated on-line data sets of the Tennessee Eastman Process (TEP). Results indicate that the incorporation of transient data in models improves the overall diagnosis performance, regardless of the particular choice between the statistical methods or the classification methods.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2011.12.006</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-1354 |
ispartof | Computers & chemical engineering, 2012-02, Vol.37, p.200-213 |
issn | 0098-1354 1873-4375 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_184867 |
source | Recercat; Elsevier ScienceDirect Journals |
subjects | ANN Aplicacions de la informàtica Aplicacions informàtiques a la física i l‘enginyeria Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Control theory. Systems Data processing. List processing. Character string processing Diagnòstic Exact sciences and technology Industrial metrology. Testing Informàtica Mechanical engineering. Machine design Memory organisation. Data processing Modelling and identification On-line fault diagnosis PCA Software SVM Tennessee Eastman Process Transient stages Àrees temàtiques de la UPC |
title | Enhanced plant fault diagnosis based on the characterization of transient stages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20plant%20fault%20diagnosis%20based%20on%20the%20characterization%20of%20transient%20stages&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Monroy,%20Isaac&rft.date=2012-02-10&rft.volume=37&rft.spage=200&rft.epage=213&rft.pages=200-213&rft.issn=0098-1354&rft.eissn=1873-4375&rft.coden=CCENDW&rft_id=info:doi/10.1016/j.compchemeng.2011.12.006&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_184867%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0098135411003437&rfr_iscdi=true |