Enhanced plant fault diagnosis based on the characterization of transient stages

This paper introduces a data-based fault diagnosis system that includes an enhanced characterization of faults during transient stages. First, data under abnormal operating conditions (AOC) is projected onto a reference PCA model constructed with data under normal operating conditions (NOC). T 2 and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2012-02, Vol.37, p.200-213
Hauptverfasser: Monroy, Isaac, Benitez, Raul, Escudero, Gerard, Graells, Moisès
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue
container_start_page 200
container_title Computers & chemical engineering
container_volume 37
creator Monroy, Isaac
Benitez, Raul
Escudero, Gerard
Graells, Moisès
description This paper introduces a data-based fault diagnosis system that includes an enhanced characterization of faults during transient stages. First, data under abnormal operating conditions (AOC) is projected onto a reference PCA model constructed with data under normal operating conditions (NOC). T 2 and Q-statistic measures of this first PCA model are both used to detect the fault and to estimate the duration and delay of its transient evolution. After a dimensionality reduction, a second NOC PCA model is used to process data before diagnosing the faults by standard classification methods such as Artificial Neural Networks (ANN) or Support Vector Machines (SVM). A quantitative validation of the procedure has been carried out using simulated on-line data sets of the Tennessee Eastman Process (TEP). Results indicate that the incorporation of transient data in models improves the overall diagnosis performance, regardless of the particular choice between the statistical methods or the classification methods.
doi_str_mv 10.1016/j.compchemeng.2011.12.006
format Article
fullrecord <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_184867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135411003437</els_id><sourcerecordid>oai_recercat_cat_2072_184867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-bc6c9d48935ca2969550f82d545d6a6618434a49c972f04448c710b2139e7bdc3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD2HBMsGvJPYSVeUhIcEC1tZk4jSu0qSyXST4ely1ApYsLMv2nDueQ8g1owWjrLpdFzhtttjbjR1XBaeMFYwXlFYnZMZULXIp6vKUzCjVKmeilOfkIoQ1pZRLpWbkdTn2MKJts-0AY8w62A0xax2sxim4kDUQ0ts0ZrG3GfbgAaP17guiS5dTl0UPY3A2oSHCyoZLctbBEOzVcZ-T9_vl2-Ixf355eFrcPecoBY15gxXqViotSgSuK12WtFO8LWXZVlBVTEkhQWrUNe-olFJhzWjDmdC2bloUc8IOuRh2aLxF6xGimcD9HvaL05qblKaqOjH6yPgpBG87s_VuA_7TMGr2Os3a_NFp9joN4ybpTOzNgd1CQBi6NDa68BPAS6kEZzrVLQ51Ng3_4aw3AZOeZNilf0XTTu4f3b4BQkWRNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced plant fault diagnosis based on the characterization of transient stages</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Monroy, Isaac ; Benitez, Raul ; Escudero, Gerard ; Graells, Moisès</creator><creatorcontrib>Monroy, Isaac ; Benitez, Raul ; Escudero, Gerard ; Graells, Moisès</creatorcontrib><description>This paper introduces a data-based fault diagnosis system that includes an enhanced characterization of faults during transient stages. First, data under abnormal operating conditions (AOC) is projected onto a reference PCA model constructed with data under normal operating conditions (NOC). T 2 and Q-statistic measures of this first PCA model are both used to detect the fault and to estimate the duration and delay of its transient evolution. After a dimensionality reduction, a second NOC PCA model is used to process data before diagnosing the faults by standard classification methods such as Artificial Neural Networks (ANN) or Support Vector Machines (SVM). A quantitative validation of the procedure has been carried out using simulated on-line data sets of the Tennessee Eastman Process (TEP). Results indicate that the incorporation of transient data in models improves the overall diagnosis performance, regardless of the particular choice between the statistical methods or the classification methods.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2011.12.006</identifier><identifier>CODEN: CCENDW</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>ANN ; Aplicacions de la informàtica ; Aplicacions informàtiques a la física i l‘enginyeria ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Control theory. Systems ; Data processing. List processing. Character string processing ; Diagnòstic ; Exact sciences and technology ; Industrial metrology. Testing ; Informàtica ; Mechanical engineering. Machine design ; Memory organisation. Data processing ; Modelling and identification ; On-line fault diagnosis ; PCA ; Software ; SVM ; Tennessee Eastman Process ; Transient stages ; Àrees temàtiques de la UPC</subject><ispartof>Computers &amp; chemical engineering, 2012-02, Vol.37, p.200-213</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-bc6c9d48935ca2969550f82d545d6a6618434a49c972f04448c710b2139e7bdc3</citedby><cites>FETCH-LOGICAL-c430t-bc6c9d48935ca2969550f82d545d6a6618434a49c972f04448c710b2139e7bdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098135411003437$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,26951,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25483219$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Monroy, Isaac</creatorcontrib><creatorcontrib>Benitez, Raul</creatorcontrib><creatorcontrib>Escudero, Gerard</creatorcontrib><creatorcontrib>Graells, Moisès</creatorcontrib><title>Enhanced plant fault diagnosis based on the characterization of transient stages</title><title>Computers &amp; chemical engineering</title><description>This paper introduces a data-based fault diagnosis system that includes an enhanced characterization of faults during transient stages. First, data under abnormal operating conditions (AOC) is projected onto a reference PCA model constructed with data under normal operating conditions (NOC). T 2 and Q-statistic measures of this first PCA model are both used to detect the fault and to estimate the duration and delay of its transient evolution. After a dimensionality reduction, a second NOC PCA model is used to process data before diagnosing the faults by standard classification methods such as Artificial Neural Networks (ANN) or Support Vector Machines (SVM). A quantitative validation of the procedure has been carried out using simulated on-line data sets of the Tennessee Eastman Process (TEP). Results indicate that the incorporation of transient data in models improves the overall diagnosis performance, regardless of the particular choice between the statistical methods or the classification methods.</description><subject>ANN</subject><subject>Aplicacions de la informàtica</subject><subject>Aplicacions informàtiques a la física i l‘enginyeria</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Control theory. Systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Diagnòstic</subject><subject>Exact sciences and technology</subject><subject>Industrial metrology. Testing</subject><subject>Informàtica</subject><subject>Mechanical engineering. Machine design</subject><subject>Memory organisation. Data processing</subject><subject>Modelling and identification</subject><subject>On-line fault diagnosis</subject><subject>PCA</subject><subject>Software</subject><subject>SVM</subject><subject>Tennessee Eastman Process</subject><subject>Transient stages</subject><subject>Àrees temàtiques de la UPC</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqNkMtOwzAQRS0EEqXwD2HBMsGvJPYSVeUhIcEC1tZk4jSu0qSyXST4ely1ApYsLMv2nDueQ8g1owWjrLpdFzhtttjbjR1XBaeMFYwXlFYnZMZULXIp6vKUzCjVKmeilOfkIoQ1pZRLpWbkdTn2MKJts-0AY8w62A0xax2sxim4kDUQ0ts0ZrG3GfbgAaP17guiS5dTl0UPY3A2oSHCyoZLctbBEOzVcZ-T9_vl2-Ixf355eFrcPecoBY15gxXqViotSgSuK12WtFO8LWXZVlBVTEkhQWrUNe-olFJhzWjDmdC2bloUc8IOuRh2aLxF6xGimcD9HvaL05qblKaqOjH6yPgpBG87s_VuA_7TMGr2Os3a_NFp9joN4ybpTOzNgd1CQBi6NDa68BPAS6kEZzrVLQ51Ng3_4aw3AZOeZNilf0XTTu4f3b4BQkWRNQ</recordid><startdate>20120210</startdate><enddate>20120210</enddate><creator>Monroy, Isaac</creator><creator>Benitez, Raul</creator><creator>Escudero, Gerard</creator><creator>Graells, Moisès</creator><general>Elsevier Ltd</general><general>Elsevier</general><general>Pergamon Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20120210</creationdate><title>Enhanced plant fault diagnosis based on the characterization of transient stages</title><author>Monroy, Isaac ; Benitez, Raul ; Escudero, Gerard ; Graells, Moisès</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-bc6c9d48935ca2969550f82d545d6a6618434a49c972f04448c710b2139e7bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ANN</topic><topic>Aplicacions de la informàtica</topic><topic>Aplicacions informàtiques a la física i l‘enginyeria</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Control theory. Systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Diagnòstic</topic><topic>Exact sciences and technology</topic><topic>Industrial metrology. Testing</topic><topic>Informàtica</topic><topic>Mechanical engineering. Machine design</topic><topic>Memory organisation. Data processing</topic><topic>Modelling and identification</topic><topic>On-line fault diagnosis</topic><topic>PCA</topic><topic>Software</topic><topic>SVM</topic><topic>Tennessee Eastman Process</topic><topic>Transient stages</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monroy, Isaac</creatorcontrib><creatorcontrib>Benitez, Raul</creatorcontrib><creatorcontrib>Escudero, Gerard</creatorcontrib><creatorcontrib>Graells, Moisès</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monroy, Isaac</au><au>Benitez, Raul</au><au>Escudero, Gerard</au><au>Graells, Moisès</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced plant fault diagnosis based on the characterization of transient stages</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2012-02-10</date><risdate>2012</risdate><volume>37</volume><spage>200</spage><epage>213</epage><pages>200-213</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><coden>CCENDW</coden><abstract>This paper introduces a data-based fault diagnosis system that includes an enhanced characterization of faults during transient stages. First, data under abnormal operating conditions (AOC) is projected onto a reference PCA model constructed with data under normal operating conditions (NOC). T 2 and Q-statistic measures of this first PCA model are both used to detect the fault and to estimate the duration and delay of its transient evolution. After a dimensionality reduction, a second NOC PCA model is used to process data before diagnosing the faults by standard classification methods such as Artificial Neural Networks (ANN) or Support Vector Machines (SVM). A quantitative validation of the procedure has been carried out using simulated on-line data sets of the Tennessee Eastman Process (TEP). Results indicate that the incorporation of transient data in models improves the overall diagnosis performance, regardless of the particular choice between the statistical methods or the classification methods.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2011.12.006</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2012-02, Vol.37, p.200-213
issn 0098-1354
1873-4375
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_184867
source Recercat; Elsevier ScienceDirect Journals
subjects ANN
Aplicacions de la informàtica
Aplicacions informàtiques a la física i l‘enginyeria
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Control theory. Systems
Data processing. List processing. Character string processing
Diagnòstic
Exact sciences and technology
Industrial metrology. Testing
Informàtica
Mechanical engineering. Machine design
Memory organisation. Data processing
Modelling and identification
On-line fault diagnosis
PCA
Software
SVM
Tennessee Eastman Process
Transient stages
Àrees temàtiques de la UPC
title Enhanced plant fault diagnosis based on the characterization of transient stages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20plant%20fault%20diagnosis%20based%20on%20the%20characterization%20of%20transient%20stages&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Monroy,%20Isaac&rft.date=2012-02-10&rft.volume=37&rft.spage=200&rft.epage=213&rft.pages=200-213&rft.issn=0098-1354&rft.eissn=1873-4375&rft.coden=CCENDW&rft_id=info:doi/10.1016/j.compchemeng.2011.12.006&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_184867%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0098135411003437&rfr_iscdi=true